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A typical spherical rendered picture is the hello world
of computer graphics.

GPU Performance for Game Artists (80.Iv/articles/gpu-performance-for-game-artists)
Ray tracing (graphics) (en.wikipedia.org/wiki/Ray_tracing_(graphics))
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'Why abandon classical rendering?

* Explicitly rendering millions of points
« Even more ray tracing for light paths
* Itis not easy to determine redundancies and compress

* Most importantly — how to realistically imitate life?
« How to use real life alignments for virtual/compute tasks
« What does it mean to understand a scene?
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‘Enter neural rendering pipelines — NeRFs (Neural Radiance Fields)
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https://www.matthewtancik.com/nerf
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‘How good are the neural pipelines for dynamic stuffs?

Algorithm from https://www.albertpumarola.com/research/D-NeRF/index.html, re-emulated by Utkarsh



https://www.albertpumarola.com/research/D-NeRF/index.html
https://www.albertpumarola.com/research/D-NeRF/index.html
https://www.albertpumarola.com/research/D-NeRF/index.html
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The alignment problem
« Does a neural netv_vork truly learn b = 1 B - -
dynamics and motion? - » o (R,f]
(=]
- Ordoes it only memorize the £ 0
frames? £ B : =
° The a"gnme nt problem — hOW to Target Selection } Feature Extraction } Feature Matching } Pose Optimization
make neural networks truly
understand "motion”
° HOW to make |‘t fast? -q:) Poirit .Cloud 2D Image \ i / POiI.lt .Cloud 2D Image
. . . = ol ’ ° =  Space = :-.'- ¢ °
* Most motion data is online, % e tt B Featecmr
from a moving frame of : £ e —— R vodGid |2
multiple moving objects N - i N i Matching Vector | 8
p g J Mesh Matching Vector Mech EEEE
+ How do | keep acquisitions and CPU was HH Loy, T
cores busy while GPU executes '
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The alignment problem — reinforce motion during training

 Add actual recovered motion loss to optimization objective
 Fast rigid body motion estimations on the fly to calculate losses on

~ N e N
CPU GPU
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IO)f |«
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acquire outside multi cores o
. world data J dynamic NeRF
\L S model y
estimate rigid , v ‘
body dynamics
. J

Shamelessly created using diffusion image models, but you get the idea
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A high-level overview
Multiple camera setup for / Send training / NeRF Model
Multiview videos / images /
Recover 3D structure from Query NeRF model to
SFM frame by frame create point cloud
Calculate actual rigid body _L__ Aligntt —— Calculate frame by frame
dynamics using ICP motion alignments
Make this part fast using parallelization
Q\
Ideally, this whole pipe should be parallelized for \\\
maximum optimization, but one thing at a time.
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A high-level overview — make the problem simpler for now:
Multiple camera setup for / Send training NeRF Model
Multiview videos / images
Recover 3D structure from Query NeRF model to
SFM frame by frame create point cloud
For now, | am
assuming that the
Calculate actual rigid body whole scene has a Calculate frame by frame
dynamics using ICP global transformation motion alignments
and not multiple rigid
bodies
Make this part fast using parallelization
Q\
Ideally, this whole pipe should be parallelized for \\\
maximum optimization, but one thing at a time.
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This kind of a setup is very suitable for modern edge devices
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Iterative Closest Point (ICP) Algorithm

Require: Fixed point cloud P, moving point cloud @, convergence threshold €, maximum iterations NV
Ensure: Transformation (R,t) aligning Q to P
1: Qo+ Q,1+0

> Find correspondences between (); and P

> Compute centroids of the corresponding points

> Compute the cross-covariance matrix

> Compute the SVD of H: H =UXVT

> Compute the translation

> Update the moving point cloud

2: repeat
3: for each point ¢; € Q;, 7 =1,...,n do
4 p;  argminyep [p — g
5: end for
6:
T D % E?=1 Dj
8: q <+ % Z?=1 q;
9:
10:  H« Yo (-3 —p"
11:
12: Compute U, ¥, and V such that H = UXV7T
132 R+ VUT
14: if det(R) < 0 then
15: Adjust V by negating its last column: V(:,n) + -V (:,n)
16: R+ VUT
17: end if
18:
19: t<—p—Rq
20:
21:  Qip1 + {Rq+t|qeQ:}
22: 141+4+1

23: until Mean error * > illpi—(Rgi+t)] <eori>N
24: return (R,t)

n
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n

What is that one fundamental
problem?

Ans — We don’t know the point
correspondences!

If we knew this was a piece of
cake. But we don’t know
where the new points are,
where did they move to?
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Iterative Closest Point (ICP) Algorithm — one step
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ICP Pseudocode
For each point g € Q, find p=arg m6i£1||p—q||.
p

Compute centroids: §=%2q, p=:>p.

. Compute cross-covariance: H = Z(q -q)p-p).
. Compute SVD: H=UZz VT,

. Compute rotation: R = VU (adjust if det(R) < 0).
. Compute translation: t=p —Rq.

. Update moving cloud: Q< RQ + t.



University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Iterative Closest Point (ICP) Algorithm — one frame solution

ICP Alignment Convergence Error vs Iteration
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Vanilla serial implementation

Step 1 — Calculate the nearest neighbors for each point on the moving cloud

for (int i = 0; i < n; i++) {
double min_dist = 1e9;
int min_idx = 0;
for (int j = 0; j < n; j++) {
double d = distance(moving[i], fixed[j]);
if (d < min_dist) {
min_dist = d;
min_idx = j;
}
}

correspondence[i] = min_idx;
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Vanilla serial implementation

Step 2 — Compute centroids for the two clouds

double sum mx = @, sum_my = O;
double sum px = @, sum _py = 0;
for (int 1 = 0; i < n; i++) {

sum_mx += moving[i].Xx;
sum_my += moving[i].y;

int idx = correspondence[i];
sum_px += fixed[idx].x;
sum_py += fixed[idx].y;

}
double

double
double
double

centroid mx = sum_mx / n;
centroid my = sum_my / n;
centroid px = sum _px / n;
centroid py = sum _py / n;
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Vanilla serial implementation

Step 3 — Compute cross covariance terms

double Sxx =
for (int i
double
double
int id
double
double
SXX +=
SXy +=

9,

gx
aqy
X =
pX
Py
gx
gx

SXy = 0;

O; 1 < n; i++) {
= moving[i].x - centroid mx;
= moving[i].y - centroid my;
correspondence[i];

= fixed[idx].x - centroid px;
= fixed[idx].y - centroid py;
*px + gy * py;
*py - ay * px;
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Vanilla serial implementation
Step 4 — Compute optimal rotation angle Step 5 — Compute centroid translation
double theta = atan2(Sxy, Sxx); double tx = centroid px - (cos_theta *
double cos theta = cos(theta); centroid mx - sin_theta * centroid my);
double sin_theta = sin(theta); double ty = centroid py - (sin_theta *
centroid mx + cos_theta * centroid my);
Step 6 — Update all points
for (int i = 0; i < n; i++) {
double x = moving[i].Xx;
double y = moving[i].y;
moving[i].x = cos_theta * x - sin_theta * y + tx;
moving[i].y = sin_theta * x + cos_theta * y + ty;
Q\
18« X
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19 « X
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Parallelization Scheme:

To implement:
» Give every processor an equal share of both target and source mesh randomly distributed
« Calculate local optimizations
» Broadcast centroid and covariances to all, receive from all
» After all send & receive, update local values
« Update all points locally ]

— lterate until convergence

Process O Process 1 Process 3

S | | C

(— —

B

MPI_Scatter: Partition Source & Target
MPI_Bcast: Exchange Target Partitions



for iter = 1 to maxlter do
University at Buffalo

Department of Computer Science for each local source point s; € S, do
and Engineering | Transform: s; < Rs; +t;

School of Engineering and Applied Sciences end

' for each process q=0,...,P—1do
Paral | el |Zat|0n SCheme Process g broadcasts its local target partition 7; via MPI_Bcast;

for each local source point s; € S, do

Search in received T, for nearest neighbor candidate t;

« Each process updates its local source points using Update local best candidate for s; if

the current transformation and computes its initial

nearest neighbor matches (local optimals) Is; — t;HQ < current best distance

« One-by-one, each process broadcasts its local target
partition (due to memory constraints), so all
processes can search that partition and update their
best candidates for every local source point

end
end

for each local source point s; € S, do
Accumulate local sums:

5'5(5311 +=s;, ’1—35(51)1’1 += best_neighbor(s;), and

Covariance: H, += s, best neighbor(s;)7;
end
// Distributed reduction: All processes share their results
Use MPI Allreduce to compute global sums:

« After all broadcasts, every process has effectively
determined the global nearest neighbor for each of its
local source points

« All processes then collectively reduce their local
accumulations (sums and covariance matrices) via ’ 1
MPI_Allreduce, ensuring that every processor has . S(P) il TWP) = H,

—_ MS sum? ,"'T sum?
the global optimal parameters N Z_; N X_; Z

j-U
*I‘J

« Finally, each process independently computes the Adjust H < H — N pg pk;
updated transformation and applies it to its local Each process computes optimal (R, t) from H (via SVD/Horn’s method) locally;
source points for the next iteration if convergence criteria met then
| break
end

end
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COSt a nalyS|S Assume that the serial ICP computation requires

Tserial =aN M:

where N is the number of source points, M is the number of target points, and « is the cost per distance compu-
tation.
In the fully distributed scheme with P processes, each process holds

N M
Niocal = F and  Mjoca = ?
Each process performs a nearest-neighbor search over all target partitions by broadcasting one partition at a time.

The computation cost per process is

aNM
Tcomp = a Ngca M = P
Each broadcast of a target partition incurs a cost 3; since there are P broadcasts per iteration, the communication
cost is
Teomm = P ﬁ .
Thus, the total parallel time per iteration is approximately
aNM
Tparallel = P + Pﬁ
The speedup S(P) is given by
aN M P

S(P) _ Tserial

Tparallel B al}f)M ‘|‘,8P B ].-|- chI\]TD;J.
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'Strong Scaling

Strong Scaling (Amdahl's Law)

| |
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‘Weak Scaling

Please note:
Time (Y) axis
scale is in 103
seconds

Execution Time (s)

Weak Scaling (Gustafson's Law)
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'Optimization: Non-Blocking Communications

« At the beginning of every iteration, the most time-consuming step is to build a k-d tree for a nearest neighbor
correspondence
« When updating values over communication, we can use the idle cores to start building k-d tree for the next step

1. Local Optimals

corr = find_correspondences(source, tgt tree, local pts);

compute src_sum[], tgt sum[], cov[][] from corr

2. Non-Blocking
Broadcast

\
| I N
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'Strong Scaling: Non-Blocking

Strong Scaling: Original vs Optimized
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Conclusions:

* Non-blocking is a very trivial optimization, case needs to be studied in more depth

» Write fused kernels: Make sure cores are busy while network transfers huge data chunks in parallel
* Mesh is being loaded in continuous chunks, but randomly — load mesh in a more ordered way

» Hierarchical implementation — but does it satisfy no Monte Carlo?

 Read more papers, study more parallel algorithms!
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Thank You!
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