ITERATIVE CLOSEST POINT USING MPI

Presentation for CSE633: Parallel Computing [Spring 2025]

Utkarsh Kumar

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

University at Buffalo

Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

' O
What is reural classical rendering?
RAY TRACING T /\
(for one pixel up to first bounce)
[]
LIGHT Textures »
@
[Rasterization I
Memory
everonr
Textures
.
VIEWING PLANE
Q—I Render Target output |

A typical spherical rendered picture is the hello world
of computer graphics.

GPU Performance for Game Artists (80.Iv/articles/gpu-performance-for-game-artists)
Ray tracing (graphics) (en.wikipedia.org/wiki/Ray_tracing_(graphics))

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

'Why abandon classical rendering?

* Explicitly rendering millions of points
« Even more ray tracing for light paths
* Itis not easy to determine redundancies and compress

* Most importantly — how to realistically imitate life?
« How to use real life alignments for virtual/compute tasks
« What does it mean to understand a scene?

University at Buffalo
B | Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

O

‘Enter neural rendering pipelines — NeRFs (Neural Radiance Fields)

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
K»(x,y,z,@,¢)—>[| »(RGBU)_ —— /\

e L | F 2 Rayy ” M-t 2
\‘/‘}’((O LTA : < 2
/ﬁ } 1 Ray 2 /\ ‘

N /\ ” W-et 2
\ Ray ISiStance ”

(a) (c) (d)

Demo Static
4 - A
l,, \‘

https://www.matthewtancik.com/nerf

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

‘How good are the neural pipelines for dynamic stuffs?

Algorithm from https://www.albertpumarola.com/research/D-NeRF/index.html, re-emulated by Utkarsh

https://www.albertpumarola.com/research/D-NeRF/index.html
https://www.albertpumarola.com/research/D-NeRF/index.html
https://www.albertpumarola.com/research/D-NeRF/index.html

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

| O
The alignment problem
« Does a neural netv_vork truly learn b = 1 B - -
dynamics and motion? - » o (R,f]
(=]
- Ordoes it only memorize the £ 0
frames? £ B : =
° The a"gnme nt problem — hOW to Target Selection } Feature Extraction } Feature Matching } Pose Optimization
make neural networks truly
understand "motion”
° HOW to make |‘t fast? -q:) Poirit .Cloud 2D Image \ i / POiI.lt .Cloud 2D Image
. . . = ol ’ ° = Space = :-.'- ¢ °
* Most motion data is online, % e tt B Featecmr
from a moving frame of : £ e —— R vodGid |2
multiple moving objects N - i N i Matching Vector | 8
p g J Mesh Matching Vector Mech EEEE
+ How do | keep acquisitions and CPU was HH Loy, T
cores busy while GPU executes '
neural rendering pipeline

University at Buffalo

Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

The alignment problem — reinforce motion during training

 Add actual recovered motion loss to optimization objective
 Fast rigid body motion estimations on the fly to calculate losses on

~ N e N
CPU GPU
(NN
IO)f |«
TTTT1)
acquire outside multi cores o
. world data J dynamic NeRF
\L S model y
estimate rigid , v ‘
body dynamics
. J

Shamelessly created using diffusion image models, but you get the idea

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

- ‘o)
A high-level overview
Multiple camera setup for / Send training / NeRF Model
Multiview videos / images /
Recover 3D structure from Query NeRF model to
SFM frame by frame create point cloud
Calculate actual rigid body _L__ Aligntt —— Calculate frame by frame
dynamics using ICP motion alignments
Make this part fast using parallelization
Q\
Ideally, this whole pipe should be parallelized for \\\
maximum optimization, but one thing at a time.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

- ‘o)
A high-level overview — make the problem simpler for now:
Multiple camera setup for / Send training NeRF Model
Multiview videos / images
Recover 3D structure from Query NeRF model to
SFM frame by frame create point cloud
For now, | am
assuming that the
Calculate actual rigid body whole scene has a Calculate frame by frame
dynamics using ICP global transformation motion alignments
and not multiple rigid
bodies
Make this part fast using parallelization
Q\
Ideally, this whole pipe should be parallelized for \\\
maximum optimization, but one thing at a time.

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

This kind of a setup is very suitable for modern edge devices

Multimedia Complex

NV Encoder NV
JPEG

ANEEEEEEEEEEEEEEEEE
ANEEEEENENEEEEEEEEE
6-core CPU T
EEEEEEEEEEEEEEEEEEN
ANEEEEENEEEEEEEEEEE
ANENEEEEEEEEEEEEEEE

NV Decoder

384-core GPU
An NVIDIA Jetson . . . 48 Tensor Cores

Compositor
Video Ingest (VI)

| 4 4
L1/L2/L3 Cache L1/L2 Cache

| |
8GB

DRAM z Memory Controller Fabric

$ $ $
21 1 2 I I

Common memory!!!

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Iterative Closest Point (ICP) Algorithm

Require: Fixed point cloud P, moving point cloud @, convergence threshold €, maximum iterations NV
Ensure: Transformation (R,t) aligning Q to P
1: Qo+ Q,1+0

> Find correspondences between (); and P

> Compute centroids of the corresponding points

> Compute the cross-covariance matrix

> Compute the SVD of H: H =UXVT

> Compute the translation

> Update the moving point cloud

2: repeat
3: for each point ¢; € Q;, 7 =1,...,n do
4 p; argminyep [p — g
5: end for
6:
T D % E?=1 Dj
8: q <+ % Z?=1 q;
9:
10: H« Yo (-3 —p"
11:
12: Compute U, ¥, and V such that H = UXV7T
132 R+ VUT
14: if det(R) < 0 then
15: Adjust V by negating its last column: V(:,n) + -V (:,n)
16: R+ VUT
17: end if
18:
19: t<—p—Rq
20:
21: Qip1 + {Rq+t|qeQ:}
22: 141+4+1

23: until Mean error * > illpi—(Rgi+t)] <eori>N
24: return (R,t)

n

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Iterative Closest Point (ICP) Algorithm

Require: Fixed point cloud P, moving point cloud @, convergence threshold €, maximum iterations NV
Ensure: Transformation (R,t) aligning Q to P
1: Qo+ Q,1+0

> Find correspondences between (); and P

> Compute centroids of the corresponding points

> Compute the cross-covariance matrix

> Compute the SVD of H: H =UXVT

> Compute the translation

> Update the moving point cloud

2: repeat
3: for each point ¢; € Q;, 7 =1,...,n do
4 p; argminyep [p — g
5: end for
6:
T D % E?=1 Dj
8: q <+ % Z?=1 q;
9:
10: H« Yo (-3 —p"
11:
12: Compute U, ¥, and V such that H = UXV7T
132 R+ VUT
14: if det(R) < 0 then
15: Adjust V by negating its last column: V(:,n) + -V (:,n)
16: R+ VUT
17: end if
18:
19: t<—p—Rq
20:
21: Qip1 + {Rq+t|qeQ:}
22: 141+4+1

23: until Mean error * > illpi—(Rgi+t)] <eori>N
24: return (R,t)

n

What is that one fundamental
problem?

Ans — We don’t know the point
correspondences!

If we knew this was a piece of
cake. But we don’t know
where the new points are,
where did they move to?

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Iterative Closest Point (ICP) Algorithm — one step

2.00

ICP Step-by-Step

1.75 A

1.50 A

1.25 A

1.00 A

0.75 A

0.50 -

0.25 ~

0.00 A

® Fixed Points
® Moving Paints

0.50 0.75 1.00 1.25

1.50

1.75

2.00

1.

2.

ICP Pseudocode
For each point g € Q, find p=arg m6i£1||p—q||.
p

Compute centroids: §=%2q, p=:>p.

. Compute cross-covariance: H = Z(q -q)p-p).
. Compute SVD: H=UZz VT,

. Compute rotation: R = VU (adjust if det(R) < 0).
. Compute translation: t=p —Rq.

. Update moving cloud: Q< RQ + t.

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Iterative Closest Point (ICP) Algorithm — one frame solution

ICP Alignment Convergence Error vs Iteration
2.00
) Fixed
Iteration 0 g i
@® Moving 0.14
b
1.75 4
0.12 4
1.50 4
®
° 0.10
1.25 4 °
® o
) [] (] =
o0 .'.) £ 0.08+
1.00 4 o . o
o0 [] ® ® o ® ©
. . 9
® o F ° z
0.75 - ° ° $ ° 0.06 -
° * ®
L] .. J. ® ‘ °
°
°®
0.50 - D @ o 0.04 1
® g .
o% °
® °
° [}
o®
0.25 b
L} ° °® 0.02
o $
[] o®
() ° ®
0.00 1
T T T T T T T T D.OO T T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0 2 4 6 8 10 12 14 16 18

Iteration

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Vanilla serial implementation

Step 1 — Calculate the nearest neighbors for each point on the moving cloud

for (int i = 0; i < n; i++) {
double min_dist = 1e9;
int min_idx = 0;
for (int j = 0; j < n; j++) {
double d = distance(moving[i], fixed[j]);
if (d < min_dist) {
min_dist = d;
min_idx = j;
}
}

correspondence[i] = min_idx;

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Vanilla serial implementation

Step 2 — Compute centroids for the two clouds

double sum mx = @, sum_my = O;
double sum px = @, sum _py = 0;
for (int 1 = 0; i < n; i++) {

sum_mx += moving[i].Xx;
sum_my += moving[i].y;

int idx = correspondence[i];
sum_px += fixed[idx].x;
sum_py += fixed[idx].y;

}
double

double
double
double

centroid mx = sum_mx / n;
centroid my = sum_my / n;
centroid px = sum _px / n;
centroid py = sum _py / n;

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Vanilla serial implementation

Step 3 — Compute cross covariance terms

double Sxx =
for (int i
double
double
int id
double
double
SXX +=
SXy +=

9,

gx
aqy
X =
pX
Py
gx
gx

SXy = 0;

O; 1 < n; i++) {
= moving[i].x - centroid mx;
= moving[i].y - centroid my;
correspondence[i];

= fixed[idx].x - centroid px;
= fixed[idx].y - centroid py;
*px + gy * py;
*py - ay * px;

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

. O
Vanilla serial implementation
Step 4 — Compute optimal rotation angle Step 5 — Compute centroid translation
double theta = atan2(Sxy, Sxx); double tx = centroid px - (cos_theta *
double cos theta = cos(theta); centroid mx - sin_theta * centroid my);
double sin_theta = sin(theta); double ty = centroid py - (sin_theta *
centroid mx + cos_theta * centroid my);
Step 6 — Update all points
for (int i = 0; i < n; i++) {
double x = moving[i].Xx;
double y = moving[i].y;
moving[i].x = cos_theta * x - sin_theta * y + tx;
moving[i].y = sin_theta * x + cos_theta * y + ty;
Q\
18« X

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

. O
Vanilla serial implementation
Step 4 — Compute optimal rotation angle Step 5 — Compute centroid translation
double theta = atan2(Sxy, Sxx); double tx = centroid px - (cos_theta *
double cos theta = cos(theta); centroid mx - sin_theta * centroid my);
double sin_theta = sin(theta); double ty = centroid py - (sin_theta *
centroid mx + cos_theta * centroid my);
Step 6 — Update all points
for (int i = 0; i < n; i++) {
double x = moving[i].Xx;
double y = moving[i].y;
moving[i].x = cos_theta * x - sin_theta * y + tx;
moving[i].y = sin_theta * x + cos_theta * y + ty;
Q\
19 « X

University at Buffalo
Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Parallelization Scheme:

To implement:
» Give every processor an equal share of both target and source mesh randomly distributed
« Calculate local optimizations
» Broadcast centroid and covariances to all, receive from all
» After all send & receive, update local values
« Update all points locally]

— lterate until convergence

Process O Process 1 Process 3

S | | C

(— —

B

MPI_Scatter: Partition Source & Target
MPI_Bcast: Exchange Target Partitions

for iter = 1 to maxlter do
University at Buffalo

Department of Computer Science for each local source point s; € S, do
and Engineering | Transform: s; < Rs; +t;

School of Engineering and Applied Sciences end

' for each process q=0,...,P—1do
Paral | el |Zat|0n SCheme Process g broadcasts its local target partition 7; via MPI_Bcast;

for each local source point s; € S, do

Search in received T, for nearest neighbor candidate t;

« Each process updates its local source points using Update local best candidate for s; if

the current transformation and computes its initial

nearest neighbor matches (local optimals) Is; — t;HQ < current best distance

« One-by-one, each process broadcasts its local target
partition (due to memory constraints), so all
processes can search that partition and update their
best candidates for every local source point

end
end

for each local source point s; € S, do
Accumulate local sums:

5'5(5311 +=s;, ’1—35(51)1’1 += best_neighbor(s;), and

Covariance: H, += s, best neighbor(s;)7;
end
// Distributed reduction: All processes share their results
Use MPI Allreduce to compute global sums:

« After all broadcasts, every process has effectively
determined the global nearest neighbor for each of its
local source points

« All processes then collectively reduce their local
accumulations (sums and covariance matrices) via ’ 1
MPI_Allreduce, ensuring that every processor has . S(P) il TWP) = H,

—_ MS sum? ,"'T sum?
the global optimal parameters N Z_; N X_; Z

j-U
*I‘J

« Finally, each process independently computes the Adjust H < H — N pg pk;
updated transformation and applies it to its local Each process computes optimal (R, t) from H (via SVD/Horn’s method) locally;
source points for the next iteration if convergence criteria met then
| break
end

end

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

COSt a nalyS|S Assume that the serial ICP computation requires

Tserial =aN M:

where N is the number of source points, M is the number of target points, and « is the cost per distance compu-
tation.
In the fully distributed scheme with P processes, each process holds

N M
Niocal = F and Mjoca = ?
Each process performs a nearest-neighbor search over all target partitions by broadcasting one partition at a time.

The computation cost per process is

aNM
Tcomp = a Ngca M = P
Each broadcast of a target partition incurs a cost 3; since there are P broadcasts per iteration, the communication
cost is
Teomm = P ﬁ .
Thus, the total parallel time per iteration is approximately
aNM
Tparallel = P + Pﬁ
The speedup S(P) is given by
aN M P

S(P) _ Tserial

Tparallel B al}f)M ‘|‘,8P B].-|- chI\]TD;J.

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

'Strong Scaling

Strong Scaling (Amdahl's Law)

| |
2" 1 —®— 10,000 pts P
—&— 100,000 pts L
-6 | —®— 1,000,000 pts e
—8— 5,000,000 pts
51 —&— 10,000,000 pts
=== |deal
24 9
23
22
21 o
Eﬂ
20 21 22 23 2° 22 28 27

Number of Cores

University at Buffalo

Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

‘Weak Scaling

Please note:
Time (Y) axis
scale is in 103
seconds

Execution Time (s)

Weak Scaling (Gustafson's Law)

135 A

130 ~

125 7

120 A

115 -

110 -

105 A

Number of Cores

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

'Optimization: Non-Blocking Communications

« At the beginning of every iteration, the most time-consuming step is to build a k-d tree for a nearest neighbor
correspondence
« When updating values over communication, we can use the idle cores to start building k-d tree for the next step

1. Local Optimals

corr = find_correspondences(source, tgt tree, local pts);

compute src_sum[], tgt sum[], cov[][] from corr

2. Non-Blocking
Broadcast

\
| I N

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

'Strong Scaling: Non-Blocking

Strong Scaling: Original vs Optimized

27t Orig 10000 pts
—®- Opt 10000 pts
& Orig 100000 pts
261 =~ Opt 100000 pts
Orig 1000000 pts
—®- Opt 1000000 pts
251 Orig 5000000 pts
Opt 5000000 pts
Orig 10000000 pts
54| —®- Opt 10000000 pts
% — |deal
g
& 23t
22 R
21 R
20 R

20 21 22 2|3 24 2° 20 27
Number of Cores

University at Buffalo

Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Conclusions:

* Non-blocking is a very trivial optimization, case needs to be studied in more depth

» Write fused kernels: Make sure cores are busy while network transfers huge data chunks in parallel
* Mesh is being loaded in continuous chunks, but randomly — load mesh in a more ordered way

» Hierarchical implementation — but does it satisfy no Monte Carlo?

 Read more papers, study more parallel algorithms!

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Thank You!

	Slide 1: Iterative closest point using mpi
	Slide 2: What is neural classical rendering?
	Slide 3: Why abandon classical rendering?
	Slide 4: Enter neural rendering pipelines – NeRFs (Neural Radiance Fields)
	Slide 5: How good are the neural pipelines for dynamic stuffs?
	Slide 6: The alignment problem
	Slide 7: The alignment problem – reinforce motion during training
	Slide 8: A high-level overview
	Slide 9: A high-level overview – make the problem simpler for now:
	Slide 10: This kind of a setup is very suitable for modern edge devices
	Slide 11: Iterative Closest Point (ICP) Algorithm
	Slide 12: Iterative Closest Point (ICP) Algorithm
	Slide 13: Iterative Closest Point (ICP) Algorithm – one step
	Slide 14: Iterative Closest Point (ICP) Algorithm – one frame solution
	Slide 15: Vanilla serial implementation
	Slide 16: Vanilla serial implementation
	Slide 17: Vanilla serial implementation
	Slide 18: Vanilla serial implementation
	Slide 19: Vanilla serial implementation
	Slide 20: Parallelization Scheme:
	Slide 21: Parallelization scheme
	Slide 22: Cost analysis
	Slide 23: Strong Scaling
	Slide 24: Weak Scaling
	Slide 25: Optimization: Non-Blocking Communications
	Slide 26: Strong Scaling: Non-Blocking
	Slide 27: Conclusions:
	Slide 28: Thank You!

