
‘-

1

Presentation for CSE633: Parallel Computing [Spring 2025]

Utkarsh Kumar

ITERATIVE CLOSEST POINT USING MPI

‘-

2

What is neural classical rendering?

A typical spherical rendered picture is the hello world
of computer graphics.

‘-

3

• Explicitly rendering millions of points

• Even more ray tracing for light paths

• It is not easy to determine redundancies and compress

• Most importantly – how to realistically imitate life?

• How to use real life alignments for virtual/compute tasks

• What does it mean to understand a scene?

Why abandon classical rendering?

‘-

4

Enter neural rendering pipelines – NeRFs (Neural Radiance Fields)

Demo Static

https://www.matthewtancik.com/nerf

‘-

5

How good are the neural pipelines for dynamic stuffs?

Algorithm from https://www.albertpumarola.com/research/D-NeRF/index.html, re-emulated by Utkarsh

https://www.albertpumarola.com/research/D-NeRF/index.html
https://www.albertpumarola.com/research/D-NeRF/index.html
https://www.albertpumarola.com/research/D-NeRF/index.html

‘-

6

• Does a neural network truly learn

dynamics and motion?

• Or does it only memorize the

frames?

• The alignment problem – how to

make neural networks truly

understand ”motion”

• How to make it fast?

• Most motion data is online,

from a moving frame of

multiple moving objects

• How do I keep acquisitions and CPU

cores busy while GPU executes

neural rendering pipeline

The alignment problem

‘-

7

• Add actual recovered motion loss to optimization objective

• Fast rigid body motion estimations on the fly to calculate losses on

The alignment problem – reinforce motion during training

Shamelessly created using diffusion image models, but you get the idea

‘-

8

Ideally, this whole pipe should be parallelized for

maximum optimization, but one thing at a time.

Make this part fast using parallelization

A high-level overview

Multiple camera setup for

Multiview videos
NeRF Model

Send training

images

Query NeRF model to

create point cloud

Calculate frame by frame

motion alignments

Recover 3D structure from

SFM frame by frame

Calculate actual rigid body

dynamics using ICP

Align!!

‘-

9

Ideally, this whole pipe should be parallelized for

maximum optimization, but one thing at a time.

Make this part fast using parallelization

A high-level overview – make the problem simpler for now:

Multiple camera setup for

Multiview videos
NeRF Model

Send training

images

Query NeRF model to

create point cloud

Calculate frame by frame

motion alignments

Recover 3D structure from

SFM frame by frame

Calculate actual rigid body

dynamics using ICP

Align!!

For now, I am

assuming that the

whole scene has a

global transformation

and not multiple rigid

bodies

‘-

10

This kind of a setup is very suitable for modern edge devices

Common memory!!!

An NVIDIA Jetson

‘-

11

Iterative Closest Point (ICP) Algorithm

‘-

12

Iterative Closest Point (ICP) Algorithm

What is that one fundamental

problem?

Ans – We don’t know the point

correspondences!
If we knew this was a piece of

cake. But we don’t know

where the new points are,

where did they move to?

‘-

13

Iterative Closest Point (ICP) Algorithm – one step

‘-

14

Iterative Closest Point (ICP) Algorithm – one frame solution

‘-

15

Vanilla serial implementation

for (int i = 0; i < n; i++) {
 double min_dist = 1e9;
 int min_idx = 0;
 for (int j = 0; j < n; j++) {
 double d = distance(moving[i], fixed[j]);
 if (d < min_dist) {
 min_dist = d;
 min_idx = j;
 }
 }
 correspondence[i] = min_idx;
 }

Step 1 – Calculate the nearest neighbors for each point on the moving cloud

‘-

16

Vanilla serial implementation

double sum_mx = 0, sum_my = 0;
 double sum_px = 0, sum_py = 0;
 for (int i = 0; i < n; i++) {
 sum_mx += moving[i].x;
 sum_my += moving[i].y;
 int idx = correspondence[i];
 sum_px += fixed[idx].x;
 sum_py += fixed[idx].y;
 }
 double centroid_mx = sum_mx / n;
 double centroid_my = sum_my / n;
 double centroid_px = sum_px / n;
 double centroid_py = sum_py / n;

Step 2 – Compute centroids for the two clouds

‘-

17

Vanilla serial implementation

double Sxx = 0, Sxy = 0;
 for (int i = 0; i < n; i++) {
 double qx = moving[i].x - centroid_mx;
 double qy = moving[i].y - centroid_my;
 int idx = correspondence[i];
 double px = fixed[idx].x - centroid_px;
 double py = fixed[idx].y - centroid_py;
 Sxx += qx * px + qy * py;
 Sxy += qx * py - qy * px;

Step 3 – Compute cross covariance terms

‘-

18

Vanilla serial implementation

double theta = atan2(Sxy, Sxx);
 double cos_theta = cos(theta);
 double sin_theta = sin(theta);

Step 4 – Compute optimal rotation angle

double tx = centroid_px - (cos_theta *
centroid_mx - sin_theta * centroid_my);
 double ty = centroid_py - (sin_theta *
centroid_mx + cos_theta * centroid_my);

Step 5 – Compute centroid translation

for (int i = 0; i < n; i++) {
 double x = moving[i].x;
 double y = moving[i].y;
 moving[i].x = cos_theta * x - sin_theta * y + tx;
 moving[i].y = sin_theta * x + cos_theta * y + ty;

Step 6 – Update all points

‘-

19

Vanilla serial implementation

double theta = atan2(Sxy, Sxx);
 double cos_theta = cos(theta);
 double sin_theta = sin(theta);

Step 4 – Compute optimal rotation angle

double tx = centroid_px - (cos_theta *
centroid_mx - sin_theta * centroid_my);
 double ty = centroid_py - (sin_theta *
centroid_mx + cos_theta * centroid_my);

Step 5 – Compute centroid translation

for (int i = 0; i < n; i++) {
 double x = moving[i].x;
 double y = moving[i].y;
 moving[i].x = cos_theta * x - sin_theta * y + tx;
 moving[i].y = sin_theta * x + cos_theta * y + ty;

Step 6 – Update all points

‘-

20

Parallelization Scheme:

To implement:

• Give every processor an equal share of both target and source mesh, randomly distributed

• Calculate local optimizations

• Broadcast centroid and covariances to all, receive from all

• After all send & receive, update local values
• Update all points locally

Iterate until convergence

‘-

21

Parallelization scheme

• Each process updates its local source points using

the current transformation and computes its initial
nearest neighbor matches (local optimals)

• One-by-one, each process broadcasts its local target
partition (due to memory constraints), so all

processes can search that partition and update their
best candidates for every local source point

• After all broadcasts, every process has effectively
determined the global nearest neighbor for each of its

local source points

• All processes then collectively reduce their local

accumulations (sums and covariance matrices) via
MPI_Allreduce, ensuring that every processor has

the global optimal parameters

• Finally, each process independently computes the

updated transformation and applies it to its local
source points for the next iteration

‘-

22

Cost analysis

‘-

23

Strong Scaling

‘-

24

Weak Scaling

Please note:

Time (Y) axis

scale is in 103

seconds

‘-

25

Optimization: Non-Blocking Communications

• At the beginning of every iteration, the most time-consuming step is to build a k-d tree for a nearest neighbor

correspondence

• When updating values over communication, we can use the idle cores to start building k-d tree for the next step

corr = find_correspondences(source, tgt_tree, local_pts);

compute src_sum[], tgt_sum[], cov[][] from corr

MPI_Iallreduce(src_sum, src_sum, 3, …, &reqs[0]);
MPI_Iallreduce(tgt_sum, tgt_sum, 3, …, &reqs[1]);
for (r = 0; r < 3; ++r)
 MPI_Iallreduce(cov[r], cov[r], 3, …, &reqs[2+r]);

free_kdtree(src_tree);
src_tree = build_kdtree(source, local_pts);

1. Local Optimals

2. Non-Blocking

Broadcast

Build for next

iteration

‘-

26

Strong Scaling: Non-Blocking

‘-

27

Conclusions:

• Non-blocking is a very trivial optimization, case needs to be studied in more depth

• Write fused kernels: Make sure cores are busy while network transfers huge data chunks in parallel

• Mesh is being loaded in continuous chunks, but randomly – load mesh in a more ordered way

• Hierarchical implementation – but does it satisfy no Monte Carlo?

• Read more papers, study more parallel algorithms!

‘-

28

Thank You!

	Slide 1: Iterative closest point using mpi
	Slide 2: What is neural classical rendering?
	Slide 3: Why abandon classical rendering?
	Slide 4: Enter neural rendering pipelines – NeRFs (Neural Radiance Fields)
	Slide 5: How good are the neural pipelines for dynamic stuffs?
	Slide 6: The alignment problem
	Slide 7: The alignment problem – reinforce motion during training
	Slide 8: A high-level overview
	Slide 9: A high-level overview – make the problem simpler for now:
	Slide 10: This kind of a setup is very suitable for modern edge devices
	Slide 11: Iterative Closest Point (ICP) Algorithm
	Slide 12: Iterative Closest Point (ICP) Algorithm
	Slide 13: Iterative Closest Point (ICP) Algorithm – one step
	Slide 14: Iterative Closest Point (ICP) Algorithm – one frame solution
	Slide 15: Vanilla serial implementation
	Slide 16: Vanilla serial implementation
	Slide 17: Vanilla serial implementation
	Slide 18: Vanilla serial implementation
	Slide 19: Vanilla serial implementation
	Slide 20: Parallelization Scheme:
	Slide 21: Parallelization scheme
	Slide 22: Cost analysis
	Slide 23: Strong Scaling
	Slide 24: Weak Scaling
	Slide 25: Optimization: Non-Blocking Communications
	Slide 26: Strong Scaling: Non-Blocking
	Slide 27: Conclusions:
	Slide 28: Thank You!

