Matrix Multiplication in Parallel

Presented by: Varsha Ganesh

Guided by:

Professor Dr. Russ Miller
Dr. Matt Jones

% University at Buffalo The state University of New York

% University at Buffalo The state University of New York

Table of Contents

Project Goals

Amdahl’s Law

Problem Definition

Sequential Algorithms

Sequential Algorithm - Run time Analysis
Parallel Algorithm

Results

Re-evaluation of Amdahl’s Law

L O 0000404040

Challenges Faced

% University at Buffalo The state University of New York

Project Goals

[Design, implement, and analyze the parallel solution of interest on modern large-scale
multiprocessor/multi-core systems.

d Getting Accustomed to real life high performance multiprocessor computing environment.

(A Solve Matrix Multiplication Problem in Parallel and compare the results with a sequential implementation to
comment on Amdahl’s law.

% University at Buffalo The state University of New York

Amdahl’s Law

(d The maximum speedup achievable by an n-processor machine is given by
S < 1/[f+ (1 = f)/n], where fis the fraction of operations in the computation
that must be performed sequentially.

d So, for example, if five percent of the operations in a given computation must be
performed sequentially, then the speedup can never be greater than 20, regardless
of how many processors are used.

[d Therefore, just a small number of sequential operations can significantly limit the
speedup of an algorithm on a parallel machine.

% University at Buffalo The state University of New York

Problem Definition - Matrix Multiplication
Given a matrix A(N xN) and a matrix B(N x N),

the matrix C(N x N) resulting from the
multiplication of matricesAand B, C=Ax B is

computed as Follows.

7 AN Note: To Compute One Value in C matrix,
- g IS we have to peform N multiplications and
» (N-1) additions. Thus to compute the N2
C{-,‘ . Z <l > bA, values in C Matrix, we have to peform
k=1 O(N”3) operations.

% University at Buffalo The state University of New York

Sequential Algorithms

Brute Force Algorithm Strassen’s Improvised Algorithm
for (i=0;i<n;i++) - e o -
for (j = 0;i<n;j++) a D e f ae + bg| af + bh
e X —
cfili] = 0; C d g h ce +dg| cf + dh
for (k = 0; k <n; k++) - - = =
o | . A B 3
c[i][j] += ali][k] * b[K][j] end for
A, B and C are square metrices of size N x N
end for end for a, b, c and d are submatrices of A, of size N/2 x N/2

e, f, g and h are submatrices of B, of size N/2 x N/2

% University at Buffalo The state University of New York

Sequential Algorithm - Runtime Analysis

Sequential RunTime Analysis

No of Matrix Running

Processors | Dimension Time(s) 3500 4

1 100 X 100 3.36 3000 A

1 200 x 200 30.49 @ 2500 1

LY

1 300 x 300 102.11 E 2000 -

1 400 x 400 228.93 ‘g 1500 1

1 500 x 500 440.95 - 1000 1

1 600 x 600 833.29 500 -

1 700 x 700 1216.29 0 -

1 800 x 800 1839.21 260 4(;0 660 860 10'00

Matrix Dimension

1 900 x 900 2591.42

1 1000 x 1000 3612.70

% University at Buffalo The state University of New York

Block Striped Matrix Decomposition - A Parallel Approach

1. Divide A_matrix along its Rows as per Number of Processors

2. Divide B_matrix along its Columns as per Number of Processors

3. All Processors in Parallel loads A[rank] and B[rank]

4. Foriin (rank,N):
C[rank,i] = A_matrix[rank] *B_matrix]i] PR -
send(rank,B_matrix[i]) £ e

B_matrix[i] = receive(rank)
5. Foriin(0, rank):
C[rank,i] = A_matrix[rank] *B_matrix]i]

Note: This is a cyclic operation,
even though there are two loops

- the Number of iterations is only N.
send(rank,B_matrix[i]) T /
B_matrix[i] = receive(rank) This YVI|| pecome more glear with

6. Write the Results of C the pictorial representation. Here N

is the number of Processors.

def send(rank,B):
if rank==0 : send(B,send = N-1, tag= N-1)
else: send(B,send = rank-1, tag= rank-1)

def receive(rank):
if rank==N-1:
B_matrix = receive(source=0,tag = rank)
else:
B_matrix = receive(source=rank+1,tag = rank)

% University at Buffalo The state University of New York

Data Distribution - After First Iteration

At Every step, each of the
four processors compute the
C33 next block of C in their row
in a cyclic fashion .To
produce C, as depicted in

| | the following slide.

3

P4| \x

Start

% University at Buffalo The state University of New York

C33

Result

C32

C33

C34

C33

C34

At Every step, each of the fo
processors compute the next
block of C in their row in a
cyclic fashion . The Number
of steps = No of Processors.

% University at Buffalo The state University of New York

Parallel Approach (100 x 100 Data Items/ Processor)

No of Matrix Size Running Time(s) Sequential Vs Parallel Running Time (100x 100)per processor
Processors 3500 - — Sequential
1 100x 100 | 3.36 000 - — Parallel
4 200 x 200 4.58 = 2500 -
16 400 x 400 | 13.65 g 2000 -
64 832x832 | 30.77 g i
256 1792 x 1792 | 65.34 £ 1000 -

500 1

0

T

250 500 750 1000 1250 1500 1750
Matrix Dimension

% University at Buffalo The state University of New York

Scaled Speed-up Achieved (100 x 100 Data Items/ Processor)

No of Speed-up Achieved Scaled Speed up (100 x 100 Data)
Processors B Speed-up Achieved
1 1 1
4 6.65
16 16.77 g\
3
64 59.77 £
‘S 16
2

64

Scaled Speed up Achieved

% University at Buffalo The state University of New York

Parallel Approach (200 x 200 Data Items/ Processor)

Sequential RunTime Vs Parallel Running Time (200x 200)per processor
No of Matrix Size Running Time(s) — ey ———
Processors —— Parallel

3000

1 200 x 200 30.49

= 2500 1
4 400 x 400 38.99 £

E 2000

on
16 800 x 800 75.01 £ 1500 -

=
64 1600 x 1600 | 143.56 “ 1000 |
256 3328 x 3328 | 336.87 200

0 - ——
0 500 1000 1500 2000 2500 3000

Matrix Dimension

% University at Buffalo The state University of New York

Parallel Approach (400 x 400 Data Items/ Processor)

Sequential RunTime Vs Parallel Running Time (400x 400)per processor
No of Matrix Size Running Time(s)
Processors 3500 - — Sequential
-~ Parallel
1 400 x 400 228.93 3000 1
4 800 x 800 | 444.03 g =
E d
16 1600 x 1600 | 973.56 = 2000
£ |
64 3200 x 3200 | 1823.54 g %
“ 1000 -
256 6400 x 6400 | 2574.67
500 A
0 p

—

T

0 1000 2000 3000 4000 5000 6000

% University at Buffalo The state University of New York

Parallel Approach (800 x 800 Data Items/ Processor)

No of Matrix Size Running Time(s) S(:gotginj:lal RunTime Vs Parallel Running Time (800x 800)per processor
Processors — Sequential
- Parallel
8000 -
1 800 x 800 1839.21
] 6000 -
4 1600 x 1600 | 2481.57 E
16 3200 x 3200 | 4802.58 § e
64 6400 x 6400 | 9919.36 S
o -
0 1000 2000 3000 4000 5000 6000

Matrix Dimension

15

% University at Buffalo The state University of New York

Speed up Factor while keeping Data Fixed (800 x 800)

No of Matrix Size Running Speed up
Processo Time(s) Factor
rs

1 800 x 800 1839.21 1

2 800 x 800 586.26 3.138
4 800 x 800 288.48 6.37

8 800 x 800 157.72 11.66
16 800 x 800 72.93 25.21
32 800 x 800 40.35 45.58
64 832 x 832 30.77 59.77
256 768 x 768 5.846 314.60

Speed up

No of Processors

Note: This is not very different
from the scaled speed up Factor,
which means that we need to
re-evaluate Amdahl’s law.

% University at Buffalo The state University of New York

Quadrupling Data Whil
No of Matrix Size | Running
Processors Time(s)
1 100 x 100 3.36

2 200 x 200 13.27

3 300 x 300 32.02

4 400 x 400 38.99

5 500 x 500 63.10

6 600 x 600 86.45

7 700 x 700 110.184
8 800 x 800 157.72

e Doubling No of Processors
No of Matrix Size Running
Processors Time(s)

9 900 x 900 181.445
10 1000 x 1000 228.20
16 1600 x 1600 973.56
24 2400 x 2400 2285.12
32 3200 x 3200 3646.03
64 6400 x 6400 9919.36
100 10000 x 10000 23163.69

Running Time(s)

Sequential RunTime Vs Parallel Running Time When
Quadrupling Data While Doubling No of Processors

3500 -

3000 1

2500 1

2000 4

1500 1

1000 -

500 1

- Sequential
- Parallel

T L !

500 1000 1500 2000 2500 3000
Matrix Dimension

% University at Buffalo The state University of New York

Reevaluation of Amdahl's Law

A Amdahl’s Law overlooks the fact that for many algorithms, the
percentage of required sequential operations decreases as the
size of the problem increases and hence the speed up achieved
will also increase with the size of the problem.

A However, this is not applicable for all problems. For problems such
as Matrix multiplication, as the size of problem increases larger
volume have data have to be communicated among processors
and will affect the speed up factor after a point.

A To solve Matrix multiplication more effectively we need to come up
with a better algorithm as well a better communication system
among processors.

18

% University at Buffalo The state University of New York

Challenges Faced

The Matrix dimensions should be completely divisible by Number of Processors.

N

(A Doubling the Matrix dimension essentially means quadrupling the size of data.
(A Thus No of Processors should also be quadrupled to achieve desired results.
N

Matrix multiplication is a heavily communication dependant Problem and thus
with increase in No of Processors/ data heavily affects the running Time.

19

% University at Buffalo The state University of New York

Questions ??

20

-
O
>
—
C
(O
L
—

