Parallel implementation of Apriori
algorithm and association of
mining rules using MPI

Fall 2012
CSE 633- Parallel Algorithms
By,
Sujith Mohan Velliyattikuzhi
50027269

What 1s Apriori

* An efficient algorithm in data mining to find the
undiscovered relationships between different items.

Operates on databases containing a set of

transactions with each transaction having a number
of item sets.

* Aims to find the set of “frequent item-sets” and
“association rules” between the items.

Frequent Item Sets

TID Iltems

Bread, Milk

Bread, Diaper, Beer, Eggs
Milk, Diaper, Beer, Coke
Bread, Milk, Diaper, Beer
Bread, Milk, Diaper, Coke

An item set 1s a collection of one or more items. Eg {Bread,
Milk}

Those items which occur more frequent.

In other words, the item sets whose support 1s greater than the
given support.

Support and Support Count

Support Count 1s the number of transactions
containing the itemsets. Eg — {Bread, Milk} = 3

Support = Support Count/Total num of transactions
eg — {Bread, Milk} = 3/5 =0.6

Frequent Item sets are those whose support 1s
greater than or equal to the specified support.

It can be 1- itemset, 2-itemset... upto n-itemsets,
where n, 1s the total number of items.

Association rules

* Association rules 1s used for discovering interesting
relationships among the items.

Confidence of an association rule X->Y =
(# of transactions of X U Y) /(# of transactions of
X)

* An association rule 1s considered to be a strong
association rule 1if its support and confidence are
greater than the specified support and confidence.

Rule Generation
Suppose min_sup=0.3, min_conf=0.6,
Support({Beer, Diaper, Milk})=0.4

TSR e All candidate rules:

Bread, Milk {Beer} — {Diaper, Milk} (s=0.4, c=0.67)
Bread, Diaper, Beer, Eggs {Diaper} — {Beer, Milk} (s=0.4, c=0.5)

. . {Milk} — {Beer, Diaper} (s=0.4, c=0.5)
Milk, Diaper, Beer, Coke {Beer, Diaper} —» {Milk} (s=0.4, c=0.67)

Bread, Milk, Diaper, Beer {Beer, Milk} — {Diaper} (s=0.4, c=0.67)
Bread, Milk, Diaper, Coke {Diaper, Milk} — {Beer} (s=0.4, c=0.67)

All non-empty real subsets Strong rules:

{Beer} , {Diaper} , {Milk}, {Beer, {Beer} — {Diaper, Milk} (s=0.4, c=0.67)
Diaper}, {Beer, Milk} , {Diaper, {Beer, Diaper} —» {Milk} (s=0.4, c=0.67)
Milk} {Beer, Milk} — {Diaper} (s=0.4, c=0.67)

{Diaper, Milk} — {Beer} (s=0.4, c=0.67)

The Aprior1 Algorithm

C,: Candidate itemset of size k

L, : frequent itemset of size k

L, = {frequent items};

for(k=1; L, !=9; k++) do
* Candidate Generation: C,,, = candidates generated from L,;

* Candidate Counting: for each transaction ¢ in database do
increment the count of all candidates in C,,; that are contained

n ¢
* L,,; = candidates in C,,; with min_sup

return U, L,;

Candidate-generation: Self-joining
* Given L, how to generate C, . ,?
Step 1: selfjjoining L,
INSERT INTO C,,,
SELECT p.item,, p.item,, ..., p.item,, q.item,

FROM L,p, L, q
WHERE p.item ,=q.item,, ..., p.item, ;=q.item,, ,, p.item, < q.item,

« Example
Ls={abc, abd, acd, ace, bcd}

Self-joining: L;*L,
abcd < abc * abd

acde € acd * ace

C,={abcd, acde}

QL
—
Q.
o v—{
Q
-
o v
(=
aF
o v—{
—
@
o v
—
Q.
<
ol
-
=
qu
—
)
/p]
)
—
—

Found to be
Infrequent

Output pattern of serial
implementation

e Number of transactions = 100 and different items = 200

200

180

160

140

120

100

80

60

40

20

0
0

Interesting patterns in the
output

* Qutput varies according to different inputs of
support and confidence and number of item sets
present.

When the support is less, more time 1s taken to run
the program.

As support increases, the time taken to run the
algorithm will be less and gradually comes to
constant after a point.

Challenges of apriori
algorithm

More time 1s taken to generate output for low
support values.

To discover a frequent pattern of size 100, about
27100 candidates needed to generate.

Multiple scans of database

Solution 77?7 — Parallelize it.

Parallel implementation

D1vide the data sets.
Each processor P. will have its on data set D,

Each processor P, reads the values of the data set
from a large flat file.

Each processor do calculation of count of item sets
1n 1ts own specific processing unit.

How 1t works

Support and confidence are given as input to first
Processor.

First processor will broadcast the support and
confidence to every other processors.

Each processor generates the first frequent item sets
from the input data.

Then data 1s divided between different processors.

In subsequent passes

* Each processor P, develops the complete C,, using
the complete frequent itemset L, ; created at the end
of pass k-1

Processor P, develop local support counts for
candidates in C, , using its local data partition.

Then each processor P, exchanges its local counts to
master processor to develop the global C, counts.

Continued.. ..

Each processor P, then computes L, from C,.

Each processor P, independently makes the decision
to terminate or continue to next pass.

The decision will be identical as the processors have
all identical L, .

Flow chart of parallel
implementation

If no frequent item set is created

Initially every
processor creates
/1% level frequent

item sets (L;)

Input support Broadcast
and confidence | support and
to 1* processor confidence

Each processor
develops local count
for each item in
candidate set and use
All Reduce function to
get total of all counts

Data set is

| divided between

different
processors

For the next level
all processors
generate
complete
candidate set C;
using complete
frequent item set
Lk1

Parallel rule generation

* Generating rules in parallel simply involves
partitioning the set of frequent item sets among the
Processors.

Each processor generates the rules using the below
algorithm

If a rule Bread, Milk, Coffee->Diaper does not
satisfy the minimum confidence, then no need to
consider rules like Bread, Milk-> Coffee, Diaper.

MPI Commands used

MPI Comm_rank
MPI Bcast
MPI AllReduce

Language used — C++

Test Cases

* (Case 1 — To find the output pattern for different
values of support and constant number of
transactions

Case 2 — To find the output pattern for different
number of transactions with same item sets.

Case 3 — To find the output pattern for different item
sets with same number of transactions.

CASE 1

Output value for different values of support.

Both number of item sets and number of
transactions are kept constant.

Various values of support from 40 to 70 are tested.

Confidence 1s also kept constant at 50.

Output of parallel
implementation

 Number of transactions =100, different number of 1tems = 200.

e (Confidence = 50

184.815 139.554 69.596 36.438 19.628 12.244
16.1468 10.968 5.42 2.856 1.576 1.11
5.5649 3.762 1.866 0.98 0.552 0.346
0.9734 0.602 0.3 0.162 0.088 0.058
0.345 0.204 0.052 0.03 0.022
0.1175 0.0616 0.015 0.008 0.014

0.01932 0.01 0.002 0.001 0.0008

Time taken graph

Time taken in
seconds in
logarithmic

scale

b3
I .

=
\y_~

Number of Processors

Speedup for parallel
implementation

 Number of transactions =100, different number of 1tems = 200.

e (Confidence = 50

Speed up graph

I T

60 80

Number of Processors

Findings from case 1

* As the support increases, the time required to solve
the problem will decrease.

As number of processors increase, the time required
to solve the problem will decrease and after some
processors it becomes constant.

In case of higher support, the time taken to solve the
problem might increase when the number of
processors. This 1s assumed to be due to the large
number of communications happening, when
compared to the time taken to solve the problem.

CASE 2

* Qutput for varying number of transactions
e Different transactions from 1000 to 64000 are taken.

* Support 1s kept at 55 and Confidence is kept at 50.

Output for varying number of
transactions

* Support = 55, Confidence = 50

1 4 8 16 32
11.3971 . 3.312 1.618 0.786 0.396
23.4285 6.78 3.372 1.634 0.78
47.2866 13.81 6.836 3.37 1.642
98.411 28.752 14.2 7.025 3.425
197.839 59.225 29.77 14.656 7.153

402.78 132.135 66.16 32.205 15.7

812.917 356.36 179.117 90.892 46.678

Time taken graph for different
number of transactions

1000

e=(m=1000

e={==2000

Time takenin : =iy 1000

seconds in \
logarithmic A e=p=2000
value -

s=e=16000

e===32000

64000

Number of processors

Speed up table for varying
number of transactions

* Support = 55, Confidence = 50

8
7.043
6.947
6.917

6.93
6.645
6.087

4.53

64

50.5879

56.865

58.234

57.974

55.417

52.685

32.69

128

74.007

90.808

105.668

113.442

110.524

105.877

63.758

Speed up graph for varying
number of transactions

120

100

80

Speedup 60

40

20

0

50 100

Number of processors

Findings from case 2

* As the number of transactions increases, the time
taken to solve the problem will also increase.

* Asthe number of processors increases, the time
taken to solve the problem decreases and speed up
will also increase.

CASE 3

Output for different number of item sets and with
same number of transactions

Number of transactions is constant and kept at 1000
Support = 70 and Confidence = 50

Item sets having values between 200 and 800 are
tested.

Output for varying number of
item sets

* Support = 70, Confidence = 50, Number of transactions = 1000

0.076 0.04 . 0.01 0.0075

0.614 0.296 0.0729 0.038

1.05 0.525 0.135 0.065

21.2171 10.64 5.21 1.455 0.762

Time taken graph for different
1item sets

Time Taken in
logarithmic
scale in seconds

Number of processors

Speed up table for varying
number of 1tem sets

* Support = 70, Confidence = 50, Number of transactions = 1000

3.65 7.3 14.6 18.25 18.25 14.6

4.091 8.182 16.589 31.868 40.366 60.55

3.973 7.87 1545 32.09 46.35 69.55

4.072 8.174 1458 2791 46.64 74.44

Speed up graph for varying
number of item sets

40 60 80 100 120 140

Number of processors

Findings from case 3

* As the number of item sets increases, the time taken
to run the program will increase.

Since high value of support 1s used, the time taken to
run the program might increase when number of
Processors increases.

This 1s mainly because of the large amount of
communication happening in the program.

Conclusions

Was able to identify the benefits of parallelizing.

When number of processors was increased,
corresponding reduction in time taken was clearly
seen.

The output depends on the size as well as the type of
input data.

Future Work

* To implement aprior1 algorithm using Open MP and
compare 1ts performance with MPI implementation
of the same.

References

1. http://rakesh.agrawal-
family.com/papers/tkde96passoc rj.pdf

2. http://www.cse.buffalo.edu/faculty/azhang/cse60
1/

http://rakesh.agrawal-family.com/papers/tkde96passoc_rj.pdf
http://rakesh.agrawal-family.com/papers/tkde96passoc_rj.pdf
http://rakesh.agrawal-family.com/papers/tkde96passoc_rj.pdf
http://rakesh.agrawal-family.com/papers/tkde96passoc_rj.pdf

