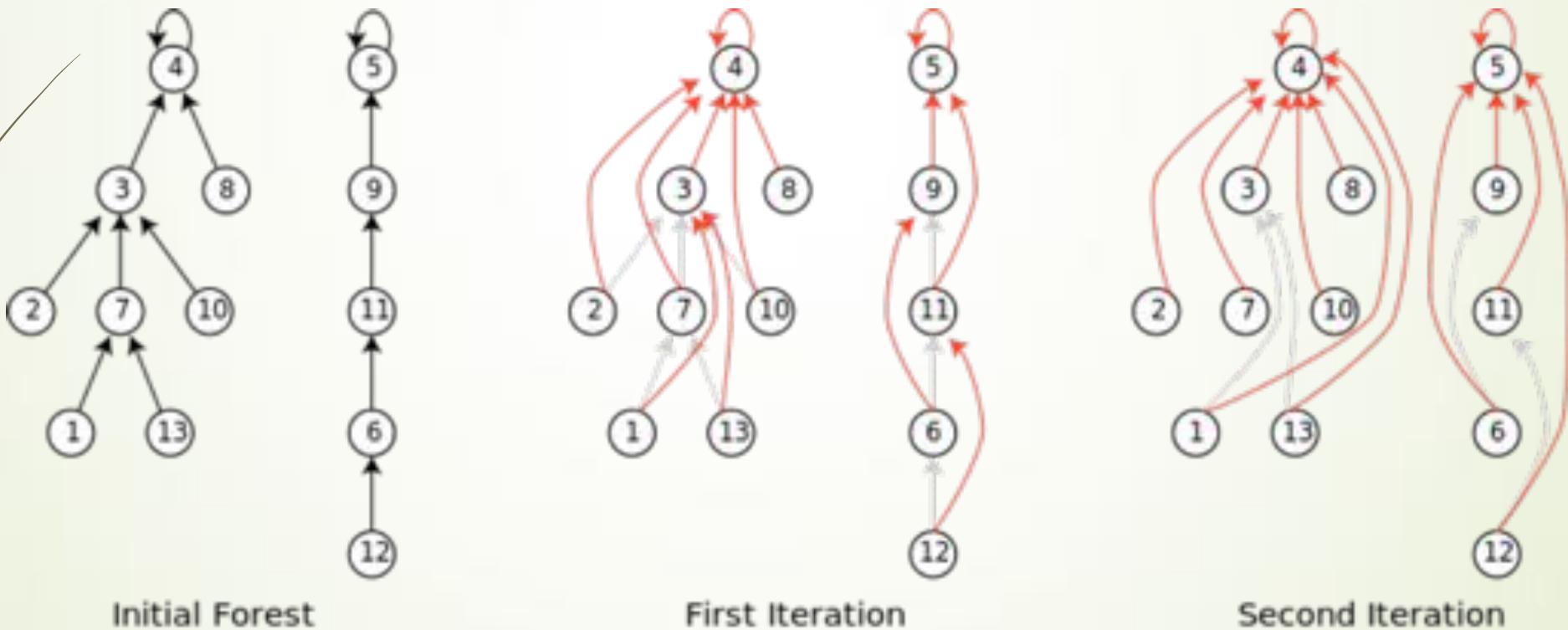


MPI Parallel Connected Component Counting on Overlap Graphs and ER Graphs


Vicky Zheng

Dr. Russ Miller

CSE 633

How to calculate number of connected components

- ▶ Kumar, S., S. Goddard, and J. Prins. Connected components algorithms for mesh-connected parallel computers. AMS, 1997.

Algorithm

```
FOREACH vertex  $u$  IN  $G$   
     $P(u) := \min\{u, \min\{v \mid \text{vertex } v \text{ is adjacent to } u \text{ in } G\}\}$   
REPEAT  
    FOREACH vertex  $u$  IN  $G$       /* Opportunistic Pointer Jumping */  
         $OldP(u) := P(u)$   
         $P'(u) := P(\min\{P(u), \min\{P(v) \mid \text{vertex } v \text{ is adjacent to vertex } u \text{ in } G\}\})$   
    FOREACH vertex  $u$  IN  $G$       /* Tree hanging */  
         $P(u) := \min\{P'(u), \min\{P'(v) \mid P(v) = u\}\}$   
    FOREACH vertex  $u$  IN  $G$       /* Normal Pointer Jumping */  
         $P(u) := P(P(u))$   
UNTIL  $P = OldP$ 
```

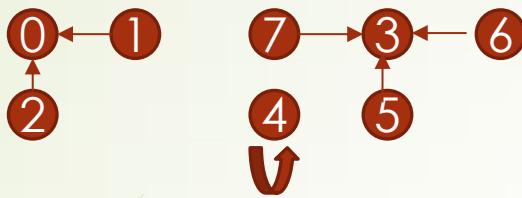

Initialization

	0	1	2	3	4	5	6	7
0	1	1	1					
1	1	1	1					
2	1		1					
3				1	1	1	1	1
4					1	1		
5				1	1	1		1
6				1		1		
7				1	1	1		1

Initialization

	0	1	2	3	4	5	6	7
0	0	0	0	0				
1	1	1	1					
2	2			2				
3				3		3	3	3
4					4	4		
5				5	5	5		5
6				6		6		
7				7	7	7		7

Initialization


	0	1	2	3	4	5	6	7
0	1	1	1					
1	1	1	1					
2	1		1					
3				1	1	1	1	1
4					1	1	1	
5					1	1	1	1
6				1		1	1	
7				1	1	1	1	

Initialization →

	0	1	2	3	4	5	6	7
0	0	0	0					
1	1	1	1					
2	2		2					
3				3	3	3	3	3
4					4	4		
5				5	5	5		5
6				6		6		
7				7	7	7		7

→ MPI_ALLreduce
Column Wise
MPI_MIN

	0	1	2	3	4	5	6	7
0	0	0	0					
1	0	0						
2	0		0					
3				3	3	3	3	3
4					4	3		
5				3	4	3		3
6				3			3	
7				3	3		3	3

Repeat until convergence

	0	1	2	3	4	5	6	7
0	0	0	0					
1	0	0						
2	0		0					
3				3	3	3	3	
4					4	3		
5				3	4	3		
6				3		3		
7				3	3		3	

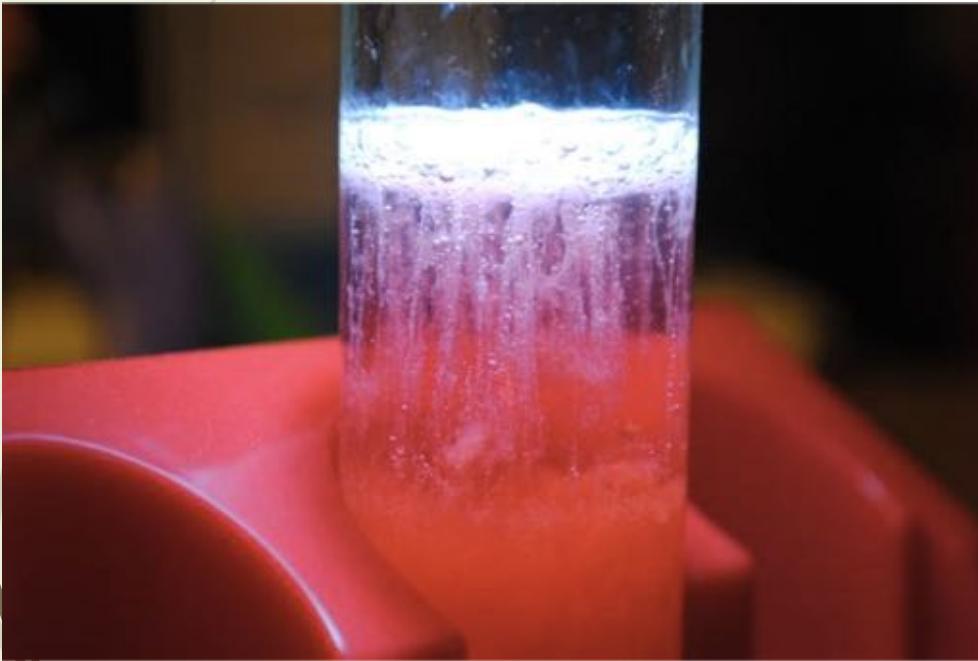
MPI_ALLreduce
Row - wise
MPI_MIN

MPI_ALLreduce
Column Wise
MPI_MIN

	0	1	2	3	4	5	6	7
0	0	0	0					
1	0	0						
2	0		0					
3				3	3	3	3	
4					3	3		
5				3	3	3		
6				3		3		
7				3	3		3	

Data Set

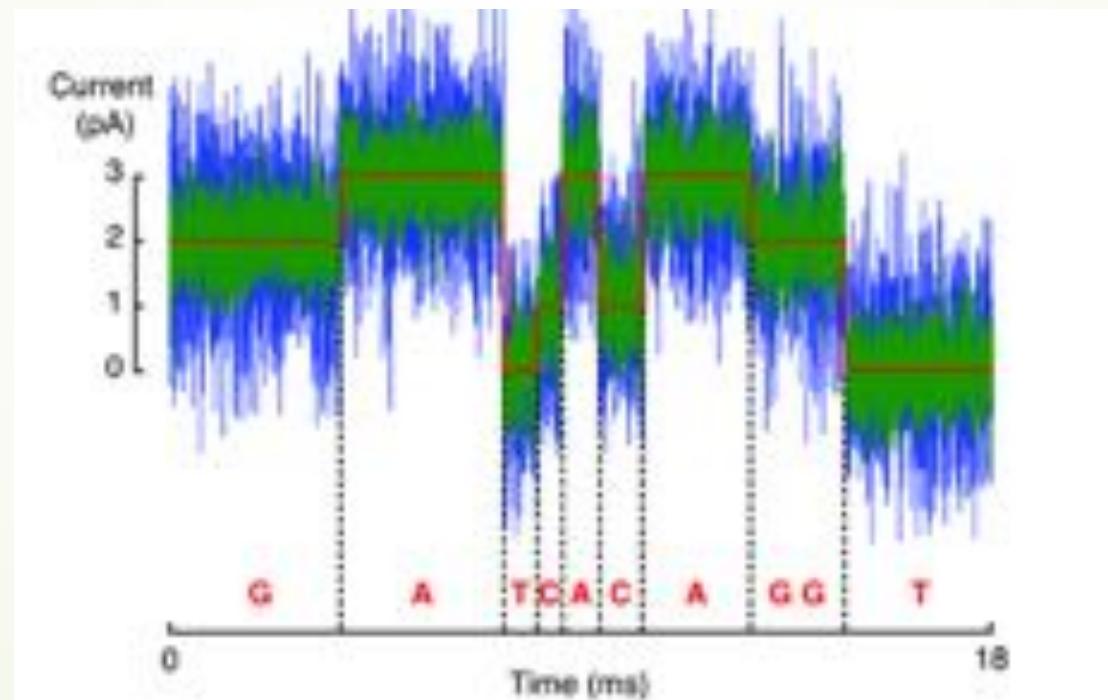
- ▶ Overlap graph of four species: *Bacteroides vulgatus*, *Klebsiella pneumoniae*, *Moraxella osloensis*, *Streptococcus suis*
- ▶ I was suppose to have 20 species in total, but the other samples were low quality (this will be explained later).
- ▶ Due to a lack of data for overlap graphs, I began using Erdős–Rényi (ER) graphs where the parameters are number of nodes and edge probability


How DNA assembly is done (recap)

- ▶ Pick and extract a sample

How DNA assembly is done (recap)

- ▶ Isolate DNA and prepare for sequencing (this is done through wet lab)


How DNA assembly is done

- ▶ Put DNA through sequencer

How DNA assembly is done

- ▶ Perform base calling to extract nucleotides.

How DNA assembly is done

► Finally, you have your reads!

After some data cleaning..

```
>NC_009614.1_267_aligned_3022_F_353_3443_1392
ACCACCACTATCAAATTGGGCCATGTTACCATGTATAAGGGAAAGTTGCCCTCCCATCACGCAATCCACGCCACACTGATCACGATTAGACCTTACCTCCACATAACTCTTACT
TGGCTGGACAACCGCCCCAACACCAACAGATAGGGGGCCAGGGATGGCTGGGCGCGCTACTGGAGCAACACATGACCTCTCAATTCCGGTCTCAGAGTTGGAGAGTACCCAGGTC
GGAAGATCACAAACAGTAGGACCCGAGAGCATTGATATGCTGTCATACGTGGAAATCTGGGAGCTTCCAGCCTCTGCCAACATACGAAGGTAGAGTAGTCAGGCAAGAATAGA
CCAGCCATATAACTGTTGGACGGGGAGAAGCAAACGCTCTCAGACATGCCACATCAATGAGGTATACGAGATGGCAACAAAGGCACCCGATCCAATGCAGGCCGGCTCGCAGGAT
TTAGACCATCATTTGAATCCAATTACATTGAGAGTGTCTAGGTTCTCAGCTCTAGGAGAAACTGTAGCTAAACATCCGGCAAAACATTCAACCCCTTCTGTTGTATGGACC
ATCCGTGGGCAAAACTCACTGACCAATGGTCTATTGGTACCCGAATCATTAGGAATTAACTGAAAAAGAGTATTGTAGTACATCAGCACATCTGGTTAGGCAATAACTGA
CTCTGTTGTCACCAATTCAATATGATTGCTCTAGTTGCTTATCAAACCATAGATTGATATTGAGATTCAAGAATTGCCGGTAACCTACCCAGAACACATTCTTCC
ACCTCTTAACCTCTGCAACAGAACGGTAAGCAACTTACTCTGACCGTGCAGGGTAACTGCTAACGTTGGAAGAACGCCCTCTGAAGCGCTTAAATGCAGGGCTAGTTGGCC
GTTTATAAAGCCGCAAGTAGAAAAAAATCTAAAGAATATCTTACGTAATAAAATAGGTGTTGAATATAACGGATAACAGTAATTAAATTCTGAAAAGTGTGCGTAAAT
GAAAGTGAACCTAGAGGGCATCTTAATTGTTCACTTTGGCACAATGCATTATTCAAGCGAGATGTGATTGGATTGGCTGAAAGACTTGTACGAAAAGCTGTACGCTTGC
ATCGAGGGAAGCGTGTACAGTAGAAGATATCTGGGTCAAGAACGTATGCCATTAAAAGCCGATCTGCCCTCCCAATCTACAAACAGAAAAGAGAAGTGTGCGTACAAGTACGT
CAGGTAGCTATTAAAGTGGCAAGAAAATAAGCCTACTGCCCTCTGCAAGTGGTAATTAAAGACATGCGACTATTGACCGCTTGCAGGTAAGTAGTAAAAGACCAA
GTAGAGGGTTGACAAAGCTTAAAGCGGATATTGAGGAAATTGAAGCTCTCTCAAAAGGAAAAAGAATAAAACACATGTTGCCAAAGGGCTGGTTCTTATTCCCTCTGCGCA
CCTCTGATTAAACGATTGATAGTCCCCGGCAATTCA CGGCTCAAAACCTGTTCTCACAGGTTAGCTCTAAGTACAGCATACTTCAATTCCGACTTCTGTATTAGACC
TCAGTAAATAACTGAGCCAGTGTCTTAATGATTCTTCAATAAACTGATGATTTCGGAAAGTGACTIONTATCTATAAAACTCTCAATATCTGCAATTAGGTATACCT
GATAAAAGCTTCACTGCAAAATAACCTCTATAGGAATGCCATGACTTGTGGGCATTCA CGGCGATATCTACTGTAATAGAAAGCACCGCATAACAAATTCCGGTCCAACTGAAG
TATATCAATGAATTGATCAGGATTATACTATCAGGAAATGTTGTTCCCGAAAAAAACAAACTTAATCCATTCTCAGCCAATGTATCATAGGTCTGAGCCACACGAGCAATGC
ATCTCGTAGTAGCATTCAAAGAAAAGAAGGGATTGTCTAACCTGGACCGCTACGCTCTGCACCATTAAGTCAGAACGGTCAATTAAAGGCCAAATAAAAGAGTACAACCG
GAGCACCTGTTGTTGACGAGTGTAAATGGGATGCCAATCTCTTCAAATCTGTCAGGAGTCACATCACACTATATAATTGCAATATACCCATTGAGAAGTTGACG
GAACCCCTTCAAGCAAATCTTAACAAACAGCAGAAATATCTCTGCTTATATTACGGAGTCCGCTTATTATTATGATTCCATATAGTATTCTCTGCAAGATAAAATA
AGAAAAGAGTAATATTGATTTTGCAAAATATTATGCAAGCTGGCTTTCAACTGTCATACACTCATCCCTCATCTAGATTTCAGGAAACAGAAAACATTCTACAAGGATA
AGCAAAGCATAATATATCTTTGATAATCAATAGTTAACAAATATGCTTGGATAACTCAATTGTTGAATACATTACTCTGCTTTTATTGTTAAATTGAAAAAAACATATATAT
CGCTTGCAGAAACTTATCTATTATAATGAGTTGTAACCTCTACACTAAAACGTGTTGATTGATATTACGTTAATATAAAATAAAAGGTGAAAGACAAACGTCACACCTATGA
CGAAGCTTCCGAAAGCATCTTACAATAACTTCAGAGGTGATGAACTTGTGCTGCCAGAGTTGAAAGGTAAACAAATAGTGCCTAAAGATCTTGGAAACATATAGATAATGTC
CGCCCGAAGATATGCATTGGCGATTGCAAATGAAGTAGCCCGATTGAAGCTAAATATAAGAACGGTTAACCGCACAGCAGCTTACGAATTATTGGATCACTTAAATACATTGT
TCCGCAAGGTAGCCTATGACAGGTATCGGTAAAGACTTCAAGTGTCTCTTATCAAACCTTTGTCAATTGGAATTGAGGAGCAGCCGACGTGTAAACGGAGGTATAATCCGCA
```


Given reads, we want to find which ones “overlap”

ACGTAGATAGCATGCTAGCAGCATGCTAGCA

GCATGCTAGCACGTAGATAGCATGCTAGCA

ATGCTAGCAGCATGCTAGCACGTAGATAGCATGCTAGCA

TGGATAAGATAGCATGCTAGCGATAGATCAAATGCTAGCAG

GCATGCTAGCAAGTACATGGATAAGATAGCATGCTAGCGATAG

Given reads, we want to find which ones “overlap”

ACGTAGATAGCATGCTAGCA **GCATGCTAGCA**

GCATGCTAGCA CGTAGATAGCATGCTAGCA

ATGCTAGCAGCATGCTAGCACGTAGATA **GCATGCTAGCA**

TGGATAAGATAGCATGCTAGCGATAGATCAA **ATGCTAGCAG**

GCATGCTAGCAAGTACATGGATAAGATAGCATGCTAGCGATAG

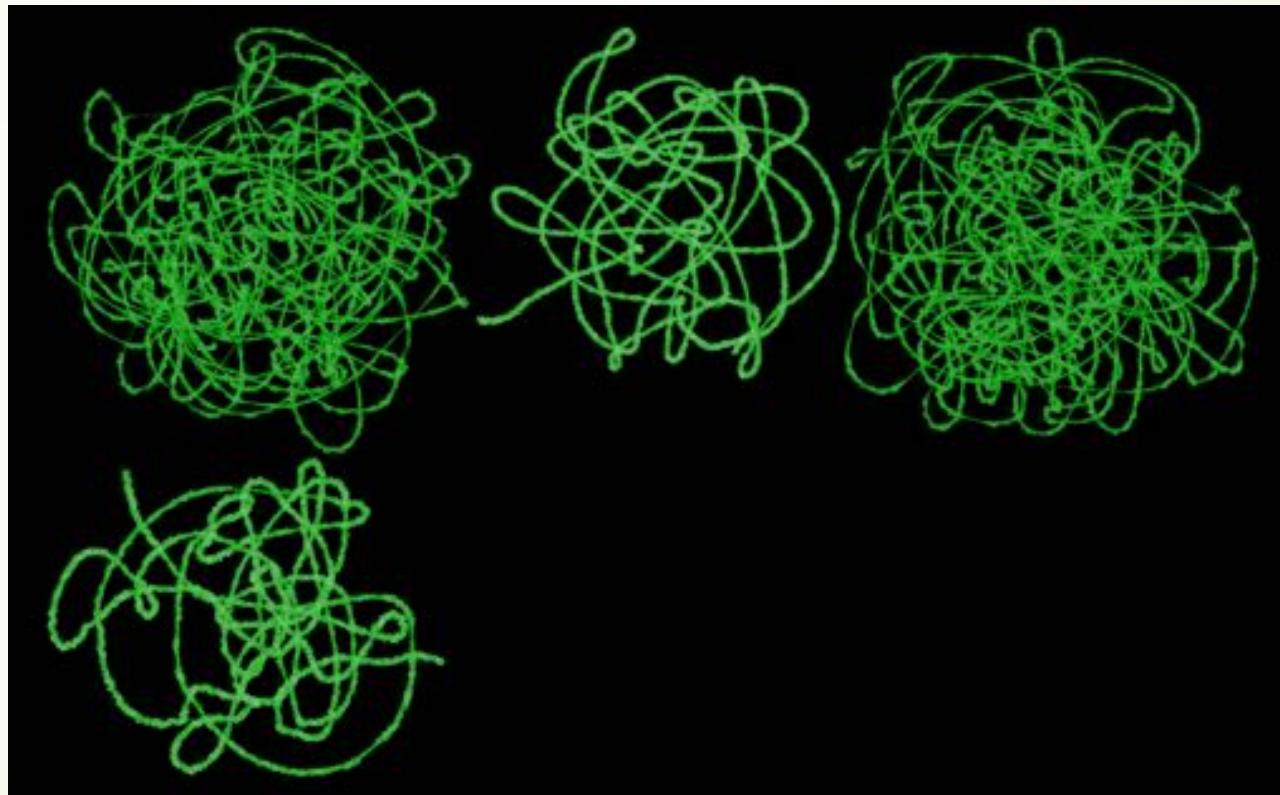
Given reads, we want to find which ones “overlap”

ACGTAGATAGCATGCTAGCA

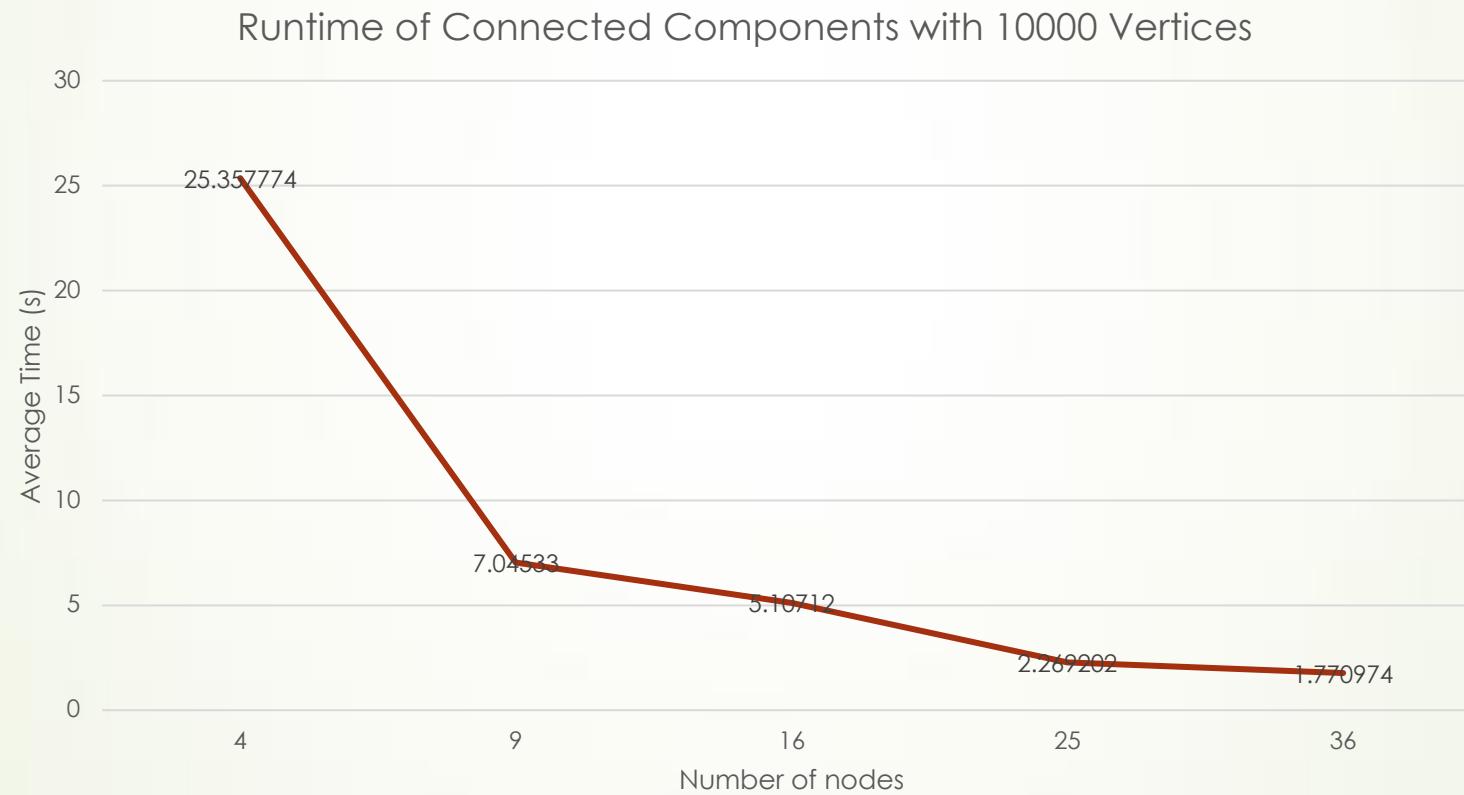
GCATGCTAGCA

TGGATAAGATAGCATGCTAGCGATAGATCAA

ATGCTAGCAGCATGCTAGCACGTAGATA

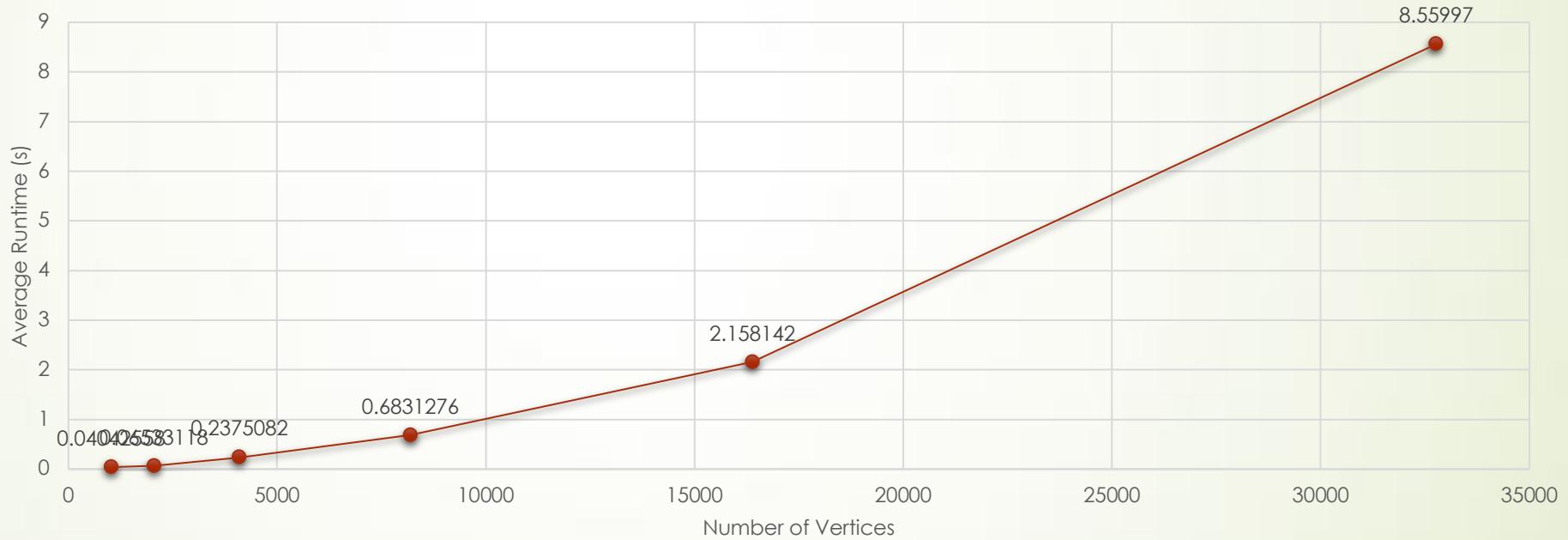


ATGCTAGCAG

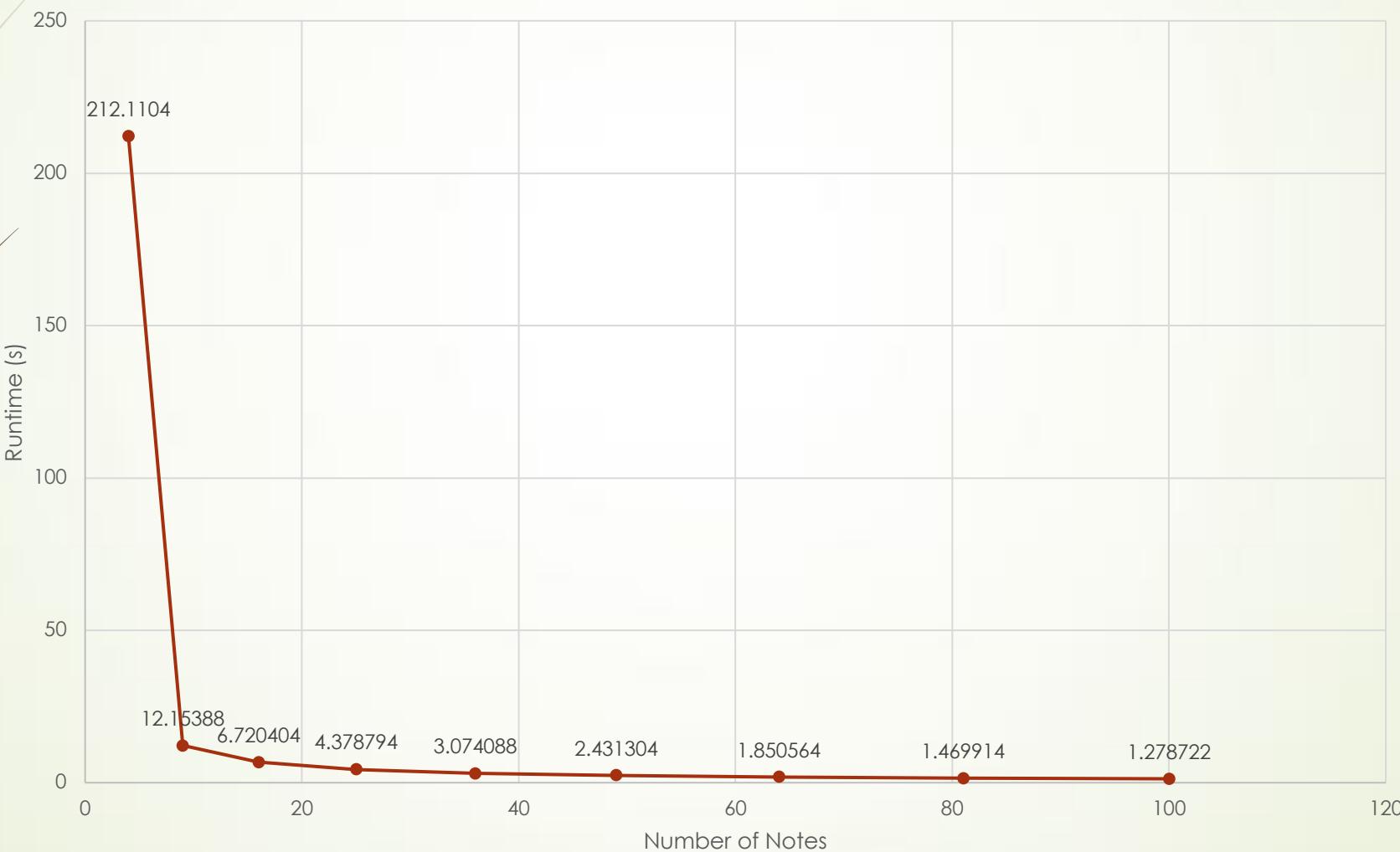


GCATGCTAGCA

Visualization of Overlap Graph



Runtime on overlap graph which has 10000 nodes


Runtime on single processor with increasing data size

Runtime of Connected Components with one processor and increasing graph size

Constant data size on multiple processors

Runtime of counting connected components on graph with 70560 vertices with increasing number of processors

Learning outcomes

- ▶ Different servers can give you dramatically different runtimes, so try to run all experiments on the same server
- ▶ Graph structure can also affect runtime due to different convergence times [3].
- ▶ Always use a seed when running experiments on random models
- ▶ Biological data can be a pain to work with

References

1. Kumar, S., S. Goddard, and J. Prins. *Connected components algorithms for mesh-connected parallel computers*. AMS, 1997.
2. Flick, Patrick, et al. "A parallel connectivity algorithm for de Bruijn graphs in metagenomic applications." *Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis*. ACM, 2015.
3. Howe, Adina Chuang, et al. "Tackling soil diversity with the assembly of large, complex metagenomes." *Proceedings of the National Academy of Sciences* 111.13 (2014): 4904-4909.
4. JáJá, Joseph (1992). *An Introduction to Parallel Algorithms*. Addison Wesley.
5. Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001) [1990]. *Introduction to Algorithms* (2nd ed.). MIT Press and McGraw-Hill.https://en.wikipedia.org/wiki/Pointer_jumping

Questions?

