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Background
• Maximum Independent Set (MIS):

• Independent Set:
• a set of vertices such that for every two vertices in the set, there is no edge 

connecting the two.
• MIS:

• A set that is not a subset of any independent set.



How to get an MIS
• Greedy Algorithm (Time complexity: O(n))

• Given a Graph G(V,E):
• Initialize I to an empty set.
• While V is not empty:

• Choose a node v∈V.
• Add v to the set I.
• Remove from V the node v and all its neighbors.

• Return I.



How to get an MIS
• Random-selection parallel algorithm [Luby's Algorithm]

• Initialize I to an empty set.
• While V is not empty:

• Choose a random set of vertices S ⊆ V.
• For every edge in E, if both its endpoints are in the random set S, then remove from S 

the endpoint that has fewer neighbors. 
• Break ties arbitrarily, e.g. using a lexicographic order on the vertex names.

• Add the set S to I.
• Remove from V the set S and all the neighbors of nodes in S.

• Return I.

• Time complexity O(log n)



Implementation
• Storing the graph as an adjacent matrix:

• Load from file.

• Initialize:
• I (selected vertices) 
• V (remaining vertices to be selected)  



Implementation
• Split graph:

• Each process randomly works on round(N/P) 
vertices, where the last process works on the 
remainder ones.

• Split adjacent matrix:
• Each process only need to store the connected 

vertices information for its processed vertices.



Implementation
• Iterations of Luby’s algorithm:

• Each process stores copies of I (selected vertices), V (remaining vertices).
• Each process works on its assigned vertices to choose the random set S’.
• Synchronize the selected random set S by union all the S’. 
• Each process checks and removes the conflict vertices with fewer neighbors.
• Synchronize the final selected vertices I and remaining set V in this iteration.



Results
• Given a sample with a fixed number of vertices:

• When the #processes increase, the time cost decrease and then increase a little bit.
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Results
• When the #processes increase, the speedup first increase and then decrease:

• Especially on the sample with less vertices.
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Results
• Compared with sequential algorithm, the parallel algorithm’s time cost increases much slower and 

tend to be logarithmic.
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Comments?


