
Random-selection parallel algorithm
(Luby's Algorithm) with MPI

Yu Nong

Background
• Maximum Independent Set (MIS):

• Independent Set:
• a set of vertices such that for every two vertices in the set, there is no edge

connecting the two.
• MIS:

• A set that is not a subset of any independent set.

How to get an MIS
• Greedy Algorithm (Time complexity: O(n))

• Given a Graph G(V,E):
• Initialize I to an empty set.
• While V is not empty:

• Choose a node v∈V.
• Add v to the set I.
• Remove from V the node v and all its neighbors.

• Return I.

How to get an MIS
• Random-selection parallel algorithm [Luby's Algorithm]

• Initialize I to an empty set.
• While V is not empty:

• Choose a random set of vertices S ⊆ V.
• For every edge in E, if both its endpoints are in the random set S, then remove from S

the endpoint that has fewer neighbors.
• Break ties arbitrarily, e.g. using a lexicographic order on the vertex names.

• Add the set S to I.
• Remove from V the set S and all the neighbors of nodes in S.

• Return I.

• Time complexity O(log n)

Implementation
• Storing the graph as an adjacent matrix:

• Load from file.

• Initialize:
• I (selected vertices)
• V (remaining vertices to be selected)

Implementation
• Split graph:

• Each process randomly works on round(N/P)
vertices, where the last process works on the
remainder ones.

• Split adjacent matrix:
• Each process only need to store the connected

vertices information for its processed vertices.

Implementation
• Iterations of Luby’s algorithm:

• Each process stores copies of I (selected vertices), V (remaining vertices).
• Each process works on its assigned vertices to choose the random set S’.
• Synchronize the selected random set S by union all the S’.
• Each process checks and removes the conflict vertices with fewer neighbors.
• Synchronize the final selected vertices I and remaining set V in this iteration.

Results
• Given a sample with a fixed number of vertices:

• When the #processes increase, the time cost decrease and then increase a little bit.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50

Ti
m

e
(s

)

#Processes

Time Cost - 500 Vertices

0

5

10

15

20

25

0 10 20 30 40 50

Ti
m

e
(s

)

#Processes

Time Cost - 1000 Vertices

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50

Ti
m

e
(s

)

#Processes

Time Cost - 2000 Vertices

Results
• When the #processes increase, the speedup first increase and then decrease:

• Especially on the sample with less vertices.

0

1

2

3

4

5

6

7

0 10 20 30 40 50

#Processes

Speedup - 500 Vertices

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50

#Processes

Speedup - 1000 Vertices

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50

#Processes

Speedup - 2000 Vertices

Results
• Compared with sequential algorithm, the parallel algorithm’s time cost increases much slower and

tend to be logarithmic.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

100 200 300 400 500 600 700 800 900 1000
Ti

m
e

(s
)

#Vertices

Gustafson's Law - 100 Vertices/Proc

0
2
4
6
8

10
12
14
16
18
20

100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

)

#Vertices

Sequential Time Cost

Comments?

