
Decentralized Parallel Inverted
Index Construction with MPI

Ziming Yang

Background
Inverted Index:

● Key data structure for search engines, mapping terms to containing documents

Example structure:

● "computer" → [doc1, doc3, doc5]
● "science" → [doc1, doc7, doc9]

● Essential for fast document retrieval and query processing

Challenges:

● Processing large text collections (Wikipedia XML Dump)
● Single machine approach too slow for real-time requirements
● Traditional master-worker architectures create bottlenecks

Project Goal:

● Implement a decentralized parallel inverted index system using MPI
● Distribute workload evenly without central coordination
● Verify Amdahl's and Gustafson's laws through performance analysis

Time Complexity Analysis

1. Sequential Algorithm: O(N)
○ N = total number of term occurrences

2. Parallel Algorithm: O(N/P + C)
○ N = total number of term occurrences
○ P = number of processes
○ C = communication overhead, approximately O(P)

3. Expected Speedup:
○ According to Amdahl's Law: S(P) = 1 / (s + (1-s)/P)
○ s = sequential fraction (communication + I/O)
○ (1-s) = parallelizable fraction (document processing)

Implementation

Data Preprocessing:

● Parse Wikipedia XML Dump into plain text documents
● Split data equally among MPI processes

MapReduce-Based Approach:

● Map phase: Process individual documents locally
● Reduce phase: Distribute terms based on first letter

Communication Pattern

● Initial distribution: Process 0 assigns files to workers
● Independent processing: No communication during map phase
● Alphabet-based assignment: Each process handles specific letters
● Final merge: Process 1 combines all partial indices

MapReduce Pattern for Inverted Index Construction

1.1 Map Phase

Each process independently processes its assigned documents, extracting terms and building a local index.

1.2 Reduce Phase

Terms are redistributed based on their first letter, with each process handling specific alphabet sections.

Implementation
Reduce Phase Algorithm:

● Each process is responsible for specific alphabet subset
● Terms redistributed based on first letter
● Merges postings lists from all processes

Communication Pattern:

● File distribution from rank 0 process
● Independent processing during Map phase
● Term redistribution with consistent hashing
● Final merging coordinated through designated process

Results

Results

Comments?

