Decentralized Parallel Inverted

Index Construction with MPI
Ziming Yang

Background

Inverted Index:

e Key data structure for search engines, mapping terms to containing documents

Example structure:

["computer" - [docl, doc3, doch]
° "science" - [docl, doc7, doc9]

e Essential for fast document retrieval and query processing
Challenges:

e Processing large text collections (Wikipedia XML Dump)
e Single machine approach too slow for real-time requirements
e Traditional master-worker architectures create bottlenecks

Project Goal:

e Implement a decentralized parallel inverted index system using MPI

e Distribute workload evenly without central coordination

e \Verify Amdahl's and Gustafson's laws through performance analysis

undivided: (25.txt,1)

muffled: (15.txt,2) (18.txt,2) (20.t{
muffled:(10.txt,1) (16.txt,3) (19.t{
timbuctoo: (19.txt,1)

jutted: (15.txt,1) (18.txt,1)
pointing:(1.txt,7) (15.txt,8) (18.tx
derisive: (6.txt,1)
brightest:(10.txt,1) (19.txt,1) (7.4
mashed: (1.txt,3) (15.txt,2)

beam: (10.txt,1) (19.txt,3)
allergic:(15.txt,1)

sawhorses: (1.txt,1) (15.txt,2)
sawhorses: (13.txt,1)

tenets: (16.txt,4) (21.txt,1)

tenets: (11.txt,1)

pages:(1.txt,5) (12.txt,9) (15.txt,
geological: (15.txt,1)

conservation: (14.txt,1)

burgen: (10.txt,1)

confusion: (16.txt,2)

confusion: (14.txt,2) (2.txt,4) (22.4
conviction: (19.txt,1)

conviction: (11.txt,6) (14.txt,2) (2.
expiation: (7.txt,1)

witte: (19.txt,1)

twa: (10.txt,1)

connective: (5.txt,2)

late:(11.txt,3) (14.txt,1) (17.txt,2
misfigured: (15.txt,1)

piled: (1.txt,1) (15.txt,1) (18.txt,
wailing:(1.txt,1) (15.txt,1) (18.tx{
wailing: (10.txt,2) (13.txt,2)
piled:(10.txt,2) (13.txt,2)

rethink: (17.txt,1)

complaints: (14.txt,1) (17.txt,1) (2.
virgin: (15.txt,1) (6.txt,1)
indictment: (3.txt,1)

indictment: (5.txt,1)

realm: (25.txt,1) (8.txt,11)
distinction:(6.txt,1)
distinction:(19.txt,1) (24.txt,1)
D = -

Time Complexity Analysis

1. Sequential Algorithm: O(N)
o N = total number of term occurrences
2. Parallel Algorithm: O(N/P + C)
o N =total number of term occurrences
o P =number of processes
o C =communication overhead, approximately O(P)
3. Expected Speedup:
o According to Amdahl's Law: S(P) =1/ (s + (1-s)/P)
o s =sequential fraction (communication + 1/O)
o (1-s) = parallelizable fraction (document processing)

Implementation

Data Preprocessing:

e Parse Wikipedia XML Dump into plain text documents
e Split data equally among MPI processes

MapReduce-Based Approach:

e Map phase: Process individual documents locally
e Reduce phase: Distribute terms based on first letter

Communication Pattern

Initial distribution: Process 0 assigns files to workers

Final merge: Process 1 combines all partial indices

Independent processing: No communication during map phase
Alphabet-based assignment: Each process handles specific letters

MapReduce Pattern for Inverted Index Construction

1.1 Map Phase

Each process independently processes its assigned documents, extracting terms and building a local index.

word count = © word[e] data:

for word in words: o0s.path.join(root, filename), 'r’
SIS ntent = f.read()
words = file_content.split()

words.sort()

if word !=

word = word.lower()
word_filename i _{abs(hash(word)) % 100000}.txt"
outFilePath = path.join(tempProcessPath, word _filename)

result = {}

word_index_path = os.path.join(tempProcessPath, "
ith open(word_index_path, 'a’) as index_file:

index_file.write(f"{word_filename}:{word}\n") result[doc] = 1

outFilePath = os.path.join(outputPath, f"result {abs(hash(word)) % 100000}.txt")
with open(outFilePath, "a’) as outFile:
outFile.write(word)
r key, count in result.items():
outFile.write(key},{count}) ")
outFile.write('\n")

with open(outFilePath, 'a’) outFile:
outFile.write(f'{data} ')
word_count += 1

1.2 Reduce Phase

Terms are redistributed based on their first letter, with each process handling specific alphabet sections.

Implementation

Reduce Phase Algorithm:

e Each process is responsible for specific alphabet subset
e Terms redistributed based on first letter
e Merges postings lists from all processes

Communication Pattern:

File distribution from rank O process

Independent processing during Map phase

Term redistribution with consistent hashing

Final merging coordinated through designated process

Results

Single Run Performance Summary

Performance for Different Processor Counts:
1 processors: 1018.94s (Speedup: 1.00x)

2 processors: 662.31s (Speedup: 1.54x)
Processors: 4

Total Words Processed: 1721178

4 processors: 483.99s (Speedup: 2.11x)
8 processors: 394.84s (Speedup: 2.58x)

Total Execution Time: 483.99 seconds
Mapping Phase: 389.71 seconds (80.52%)
Reduce Phase: 7.84 seconds (1.62%) & —~ Estimated Speedup

Ideal Linear Speedup

Other Time: 86.45 seconds (17.86%) | L@ Achiah S processor)

Speedup vs Number of Processors

Time Breakdown (4 processors)

250 37

200 24 3
150 o
14

200 1 2 3 4 5 6 7 8
Number of Processors

Time (seconds)

Mapping Phase Reduce Phase Other
Processing Phase

Results

Speedup

Amdahl's Law Analysis

100 +

50

-50

—— Amdahl's Law (Est. parallel: 142.86%)
—==- Linear Speedup
@ Actual (4 processors)

2 4 6 8 10 12 14 16
Number of Processors

Time (seconds)

Execution Time vs Number of Processors

1000 +

900 ~

800

700 -

600 -

500 +

400

—e— Estimated Total Time
® Actual (4 processors)

3 4 5 6
Number of Processors

Comments?

