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Background

Inverted Index:

e Key data structure for search engines, mapping terms to containing documents

Example structure:

[ "computer" - [docl, doc3, doch]
° "science" - [docl, doc7, doc9]

e Essential for fast document retrieval and query processing
Challenges:

e  Processing large text collections (Wikipedia XML Dump)
e  Single machine approach too slow for real-time requirements
e Traditional master-worker architectures create bottlenecks

Project Goal:

e Implement a decentralized parallel inverted index system using MPI

e Distribute workload evenly without central coordination

e \Verify Amdahl's and Gustafson's laws through performance analysis
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Time Complexity Analysis

1.  Sequential Algorithm: O(N)
o N = total number of term occurrences
2. Parallel Algorithm: O(N/P + C)
o N =total number of term occurrences
o P =number of processes
o  C =communication overhead, approximately O(P)
3. Expected Speedup:
o  According to Amdahl's Law: S(P) =1/ (s + (1-s)/P)
o s =sequential fraction (communication + 1/O)
o  (1-s) = parallelizable fraction (document processing)



Implementation

Data Preprocessing:

e  Parse Wikipedia XML Dump into plain text documents
e  Split data equally among MPI processes

MapReduce-Based Approach:

e  Map phase: Process individual documents locally
e Reduce phase: Distribute terms based on first letter

Communication Pattern

Initial distribution: Process 0 assigns files to workers

Final merge: Process 1 combines all partial indices

Independent processing: No communication during map phase
Alphabet-based assignment: Each process handles specific letters



MapReduce Pattern for Inverted Index Construction

1.1 Map Phase

Each process independently processes its assigned documents, extracting terms and building a local index.

word count = © word[e] data:

for word in words: o0s.path.join(root, filename), 'r’
SIS ntent = f.read()
words = file_content.split()

words.sort()

if word !=

word = word.lower()
word_filename i _{abs(hash(word)) % 100000}.txt"
outFilePath = path.join(tempProcessPath, word _filename)

result = {}

word_index_path = os.path.join(tempProcessPath, "
ith open(word_index_path, 'a’) as index_file:

index_file.write(f"{word_filename}:{word}\n") result[doc] = 1

outFilePath = os.path.join(outputPath, f"result {abs(hash(word)) % 100000}.txt")
with open(outFilePath, "a’) as outFile:
outFile.write( word )
r key, count in result.items():
outFile.write( key},{count}) ")
outFile.write('\n")

with open(outFilePath, 'a’) outFile:
outFile.write(f'{data} ')
word_count += 1

1.2 Reduce Phase

Terms are redistributed based on their first letter, with each process handling specific alphabet sections.



Implementation

Reduce Phase Algorithm:

e Each process is responsible for specific alphabet subset
e Terms redistributed based on first letter
e  Merges postings lists from all processes

Communication Pattern:

File distribution from rank O process

Independent processing during Map phase

Term redistribution with consistent hashing

Final merging coordinated through designated process



Results

Single Run Performance Summary

Performance for Different Processor Counts:
1 processors: 1018.94s (Speedup: 1.00x)

2 processors: 662.31s (Speedup: 1.54x)
Processors: 4

Total Words Processed: 1721178

4 processors: 483.99s (Speedup: 2.11x)
8 processors: 394.84s (Speedup: 2.58x)

Total Execution Time: 483.99 seconds
Mapping Phase: 389.71 seconds (80.52%)
Reduce Phase: 7.84 seconds (1.62%) & —~ Estimated Speedup

Ideal Linear Speedup

Other Time: 86.45 seconds (17.86%) | L@ Achiah S processor)

Speedup vs Number of Processors
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Results

Speedup

Amdahl's Law Analysis
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Comments?



