
Delaunay Triangulation
in Parallel

Adarsh Prakash

CSE 633 : Parallel Algorithms

(Spring 2017)

Instructor: Dr. Russ Miller

| Computer Science and Engineering

Definition

Triangle ΔABC is a Delaunay Triangle, if no other points lie in
the circumcircle formed by ΔABC.

Invalid Delaunay Δ Valid Delaunay Δs

| Computer Science and Engineering

Delaunay – Voronoi: Duality

A Voronoi diagram is constructed by connecting centers of all
the circumcircles formed by the Delaunay Triangles in a graph.

Delaunay Triangulation

Voronoi Diagram

| Computer Science and Engineering

Direct Applications

• Nearest Neighbor

• Graph Locality / Point Location

• Surface Mapping / Reconstruction

• Game Development

• Motion Capture

• Path Planning (Autonomous Navigation)

• Physics – studying forces..

• Chemistry – atomic charges..

• Biology, Astrophysics and so on.

| Computer Science and Engineering

Applications

| Computer Science and Engineering

Algorithm

• Divide-and-conquer algorithm proposed by Leonidas
Guibas and Jorge Stolfi [1].

• Follows closely the Voronoi construction algorithm
from Shamos and Hoey [2].

• Difference is it clearly describes how to make use of
quad-edge data structure to avoid computation of
complete hull.

• Properties:
• A quad-edge knows its direction (origin-destination NOT

point-point)
• A quad-edge maintains pointers to all edges leaving from and

terminating at their origin and destination. (4-8 pointers
depending on implementation)

• Objective is to parallelize this algorithm.

| Computer Science and Engineering

Algorithm: Merge Step
L R

| Computer Science and Engineering

Algorithm: Merge Step
L R

| Computer Science and Engineering

Algorithm: Merge Step
L R

| Computer Science and Engineering

Algorithm: Parallel Overview

Compute Delaunay Triangulation
of Local Region

Merge Incoming Region and Local
Region

Processor i

Send or Receive from other
Processors

Repeat or exit

| Computer Science and Engineering

Domain Decomposition

P0 P1 P2 P3

Input space divided equally by X-Coordinate among Processors

| Computer Science and Engineering

Implementation

• Implementation in C and MPI

• Pseudo code from paper for serial version of merge
– made life easier

• Jobs were run on general-compute and largemem
partitions of CCR

• All communications are point-to-point: MPI_Send
and MPI_Recv

• Data send/receive happens in a single block (as
many as 31 million edges ~ 700mb)

• Approx. 500 jobs to cluster

| Computer Science and Engineering

Implementation

• Input:
• Randomly generated points – Bivariate Uniform

Distribution using Python numpy package

• Equal range and density across both the axes

• No duplicates and pre-sorted by X-Coordinate

• Each coordinate is “double” precision ∈ [0, 200*n]

• Output:
• Edge endpoints as indices

0, 162.422299106, 626335123.072
1, 235.609542392, 21674347.1286
2, 348.128895741, 545885503.786
3, 388.434040826, 160544722.935
…

0 1
0 3
0 4
0 2
…

Sample Input Sample Output

| Computer Science and Engineering

Results

• Run-times averaged over 3-5 jobs/runs
• Time spent on reading input file and writing the results

to output file is ignored
• Only Computation Time (with communication cost) is

used in analysis
• Tried for several core-node combinations:

• 2 CPUs per node with shm (intranode) and tmi (internode)
• 1 CPU per node with dapl (internode)
• 1 CPU per node with tmi (internode)
• Upto 32 CPUs per node with tcp (intranode) and tcp (internode) –

I_MPI_FABRICS and I_MPI_FALLBACK to the rescue!

• All results validated against results from standard packages:
• Python (scipy.spatial.Delaunay) - faster
• Matlab (triangulation)

| Computer Science and Engineering

Time v/s CPU (1 CPU per node – TMI)

0

5

10

15

20

25

1 2 4 8 16 32 64

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
se

c
o

n
d

s)

Number of CPUs (log scale)

1 Million Points 2 Million Points 4 Million Points

| Computer Science and Engineering

Speedup v/s CPU (1 CPU per node – TMI)

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32 64

S
p

e
e

d
u

p
 R

a
ti

o

Number of CPUs (log scale)

1 Million Points 2 Million Points 4 Million Points

| Computer Science and Engineering

Time v/s CPU (32 CPUs per node – TCP – no shm)

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128 256

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
se

c
o

n
d

s)

Number of CPUs (log scale)

1 Million Points 2 Million Points 4 Million Points

| Computer Science and Engineering

Speedup v/s CPU (32 CPUs per node – TCP – no shm)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32 64 128 256

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
se

c
o

n
d

s)

Number of CPUs (log scale)

1 Million Points 2 Million Points 4 Million Points

| Computer Science and Engineering

Asymptotic Growth (8 CPUs with 1 CPU per node)

0

5

10

15

20

25

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
se

c
o

n
d

s)

Data – Number of Points (Powers of 2)

| Computer Science and Engineering

Conclusion

• That drop in speedup for 32-cpus-per-node?
• Communication Cost: Intranode < Internode

• Difference is significant for TCP and hence the sudden drop

• Hard Merge – High Communication Costs –
No Linear Speedup

• But, there is gain

• Data still needs to fit into a single machine!

| Computer Science and Engineering

References

• Primitives for the Manipulation of General Subdivisions and
the Computation of Voronoi Diagrams – Guibas, L. and
Stolfi, J.

• Closest-Point Problems – Shamos, M.I. and Hoey, D.

• On computing Voronoi diagrams by divide-prune-and-
conquer – Amato, N.M. and Ramos, E.A.

• Chapter 10: Computational Geometry, Algorithms –
Sequential and Parallel – Miller, R. and Boxer, L.

| Computer Science and Engineering

Thank You

adarshpr@buffalo.edu

Binaries, scripts, code and results available at: https://github.com/adrsh18/parallel

Thanks to Dr. M Jones and CCR @ UB

mailto:adarshpr@buffalo.edu
https://github.com/adrsh18/parallel

| Computer Science and Engineering

Backup: Analysis

• Sequential runtime: O(n * logn) [T(n) = 2 * T(n/2) +
O(n)]

• “Heavy” merge step with O(n). Parallelization
possible?!!

• Analysis with p processors:
• Each processor locally and simultaneously computes DT on 𝒏

𝒑
points 

O{ 𝑛
𝑝

* log (𝑛
𝑝

) }

• DTs from each processor is stitched together (happens logp times) 

O(n * logp)

• So, total runtime = O {𝑛
𝑝

* log (𝑛
𝑝

) + n * logp}

• If p = logn, runtime = O(n log(logn))

