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Definition

Triangle ΔABC is a Delaunay Triangle, if no other points lie in 
the circumcircle formed by ΔABC.

Invalid Delaunay Δ Valid Delaunay Δs 
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Delaunay – Voronoi: Duality

A Voronoi diagram is constructed by connecting centers of all 
the circumcircles formed by the Delaunay Triangles in a graph.

Delaunay Triangulation

Voronoi Diagram
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Direct Applications

• Nearest Neighbor

• Graph Locality / Point Location

• Surface Mapping / Reconstruction

• Game Development

• Motion Capture

• Path Planning (Autonomous Navigation)

• Physics – studying forces..

• Chemistry – atomic charges..

• Biology, Astrophysics and so on.
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Applications
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Algorithm

• Divide-and-conquer algorithm proposed by Leonidas 
Guibas and Jorge Stolfi [1].

• Follows closely the Voronoi construction algorithm 
from Shamos and Hoey [2].

• Difference is it clearly describes how to make use of 
quad-edge data structure to avoid computation of 
complete hull. 

• Properties:
• A quad-edge knows its direction (origin-destination NOT 

point-point)
• A quad-edge maintains pointers to all edges leaving from and 

terminating at their origin and destination. (4-8 pointers 
depending on implementation)

• Objective is to parallelize this algorithm.
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Algorithm: Merge Step
L R
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Algorithm: Merge Step
L R
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Algorithm: Merge Step
L R
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Algorithm: Parallel Overview

Compute Delaunay Triangulation 
of Local Region

Merge Incoming Region and Local 
Region

Processor i

Send or Receive from other 
Processors

Repeat or exit
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Domain Decomposition

P0 P1 P2 P3

Input space divided equally by X-Coordinate among Processors
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Implementation

• Implementation in C and MPI

• Pseudo code from paper for serial version of merge 
– made life easier 

• Jobs were run on general-compute and largemem
partitions of CCR

• All communications are point-to-point: MPI_Send
and MPI_Recv

• Data send/receive happens in a single block ( as 
many as 31 million edges ~ 700mb)

• Approx. 500 jobs to cluster
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Implementation

• Input:
• Randomly generated points – Bivariate Uniform 

Distribution using Python numpy package

• Equal range and density across both the axes

• No duplicates and pre-sorted by X-Coordinate

• Each coordinate is “double” precision ∈ [0, 200*n]

• Output:
• Edge endpoints as indices

0, 162.422299106, 626335123.072
1, 235.609542392, 21674347.1286
2, 348.128895741, 545885503.786
3, 388.434040826, 160544722.935
…

0 1
0 3
0 4
0 2
…

Sample Input Sample Output
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Results

• Run-times averaged over 3-5 jobs/runs
• Time spent on reading input file and writing the results 

to output file is ignored
• Only Computation Time (with communication cost) is

used in analysis
• Tried for several core-node combinations:

• 2 CPUs per node with shm (intranode) and tmi (internode) 
• 1 CPU per node with dapl (internode)
• 1 CPU per node with tmi (internode)
• Upto 32 CPUs per node with tcp (intranode) and tcp (internode) –

I_MPI_FABRICS and I_MPI_FALLBACK to the rescue!

• All results validated against results from standard packages:
• Python (scipy.spatial.Delaunay) - faster
• Matlab (triangulation)
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Time v/s CPU (1 CPU per node – TMI)
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Speedup v/s CPU (1 CPU per node – TMI)
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Time v/s CPU (32 CPUs per node – TCP – no shm)
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Speedup v/s CPU (32 CPUs per node – TCP – no shm)
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Asymptotic Growth (8 CPUs with 1 CPU per node)
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Conclusion

• That drop in speedup for 32-cpus-per-node?
• Communication Cost: Intranode < Internode

• Difference is significant for TCP and hence the sudden drop

• Hard Merge – High Communication Costs –
No Linear Speedup

• But, there is gain

• Data still needs to fit into a single machine!
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Thank You

adarshpr@buffalo.edu

Binaries, scripts, code and results available at: https://github.com/adrsh18/parallel

Thanks to Dr. M Jones and CCR @ UB

mailto:adarshpr@buffalo.edu
https://github.com/adrsh18/parallel
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Backup: Analysis

• Sequential runtime: O(n * logn) [T(n) = 2 * T(n/2) + 
O(n)] 

• “Heavy” merge step with O(n). Parallelization 
possible?!!

• Analysis with p processors:
• Each processor locally and simultaneously computes DT on 𝒏

𝒑
points 

O{ 𝑛
𝑝

* log ( 𝑛
𝑝

) }

• DTs from each processor is stitched together (happens logp times)  

O( n * logp)

• So, total runtime = O {𝑛
𝑝

* log ( 𝑛
𝑝

)   + n * logp}

• If p = logn, runtime = O(n log(logn))


