Parallell' Scalar Vultiplication

of Elliptic Curve Points

CSE 633
George Gunner
March 28, 2017
Professor: Dr. Russ Miller

Motivation

*Elliptic curves are commonly used in public-key
cryptography

- Digital Signatures

-Symmetric Key Exchange

*Scalar multiplication of points on a curve is the
most costly operation performed

Background'=Finite Fields

‘A finite field on p" is the set of integers in {0, p"},
where p Is a prime and n is some positive integer

*Two types of finite fields are of interest
~Prime fields, where n=1
- Uses regular arithmetic, modulo a prime p
-Binary fields, where p=2

- Uses polynomial arithmetic, modulo an
irreducible polynomial p

Background'—"Poelynomial

Arithmetic on a Finite Field

-The binary number b__|[b__]|...||b, represents the
polynomial}." b, x

*Arithmetic operations defined in terms of
polynomials, with coefficients computed modulo 2

‘Squaring is efficiently achieved on binary fields

-|nserting a O between consecutive bits of a
number yields its square

~O(n) time compared to O(n?) time for
multiplication

Background'="Non-

Adjacent Forms

‘A non-adjacent form (NAF) is an alternate
representation for an integer k such that k= Z k2
where ke€{0, +1} and no two consecutive dlglts are

nonzero

-A windowed NAF (WNAF) for k is the
representation k:Z’:; k2" such that |k| < 2" for a

window size w, k. is 0 or odd, and for any w
consecutive digits, at most one is honzero

I

Elliptic Curves

*General elliptic curve equation
y’+axy +by=x>+cx’+dx +e
*Two general types of curves are of interest:
~-Prime curves: y’=x"+ax+b
~-Binary curves: y +xy=x"+ax’+b

= Binary curve with certain properties called
Koblitz curves allows field squaring to
replace less efficient point doubling in scalar
multiplication, which will be particularly
suitable for a parallel implementation

Elliptic Curve Coordinates

_ ‘Natural to think of curves and points in terms of
affine coordinates (X, y) for geometric intuition
and to describe algebraic properties

‘Computation often more efficient when projecting
on a higher dimensional space

~ie. Projective coordinates (X, y, z) from the
affine coordinates (x/z, y/z)

‘Compressed coordinates can be used to
transmit points with minimal size

- The x affine coordinate and a bit signifying the
corresponding y value to use

Prime Curves

‘For a prime curye, if we have nonzero
determinant 4 a>+27b>#0(mod p) we can define
addition of points and form an abelian group:

= Closure

- Associativity

- Commutativity

|

|

dentity E
nverse E

ement (O, “point at infinity”)
ement (-P for a point P)

*Two basic point operations: point addition and
point doubling

Prime Curves — Geometric
Intuition

Elliptic Curve with a=0, b=1

Prime Curves — Scalar

Multiplication

‘Basic approach is the “double-and-add” method
to compute kP given k=b__[|b__||...]|b,the binary

representation of k

Input: P, k=b__[|b__||...||b,
Output: Q = kP
Q=0
For i from O to n-1
Q=2Q
If b=1 then Q=Q+P

Return Q

Prime Curves — Scalar

Multiplication

‘More efficient by a constant factor to use a wNAF
method:

Input: P, k
Output: Q =kP -1 |
Compute WNAF of k= Z,_O k.2
Precompute jP for j={1, 3, ..., 2*1-1}
Q=0
ForifromI-1to 0
Q=2Q
if k>0 then Q = Q+kP
else if k#0 then Q=Q-kP
Return Q

Binary Curves

‘Binary curves require b#0 to define an abelian
group

‘General binary curves use same algorithms as
prime curves to compute scalar multiplication

‘Koblitz curves have a property which allows more
efficient computation of scalar multiplication

~Given a point (X, y) on the curve, (x2, y?) is
also on the curve, and this can be used to
replace point doubling by field squaring

Koblitz Curves — 1t Operator

‘Define the T operator such that 1(x, y)=(x?, y?)
and 10=0

- Recall that squaring on a finite field over 2™
can be computed efficiently

*Given a point P, we have (12+2)P=utP where p=(-
1)+2 where T is the 1 operator applied j times

‘From the above result, we can consider t as the
complex number satisfying 14+2=pt

- 1=(u+v—=7)/2
~Allows a scalar to be expressed in terms of 1

Koblitz Curves — WTtNAF

A number K=r +r.T on the ring Z [t | has a wiNAF
representation k = Z u.t' where

uz_{ 0, Oips iz, O(‘_(ZW 1—1)}
- The a=B.+y1 for each window size are chosen

so that each precomputed point requires at
most a single point addition and a single
application of T during precomputation

Koblitz Curves — wTtNAF

~ *Computing the wiNAF representation for a scalar
results in a representation that is too long In
general — ~2m digits for an m-bit scalar

*To get a suitable length representation, find a
complex number p' such that p'=k (mod 0) where
0=(T" — 1)/(T — 1) using partial modulo reduction

- The equivalence ensures that p'P=kP, where
p' has a sufficiently short representation
bounded In length by m+a+3

- High probability of finding p, the shortest
representation based on a chosen parameter C

Koblitz Curves — wWTtNAF

Multiplication
‘The wtNAF method is as follows:

Input: P, p'=Y._ u
Output: Q=p'P=kP
Precompute P =a P for ue{+1l, 3, ..., £(2"**-1)}
Q=0
Forlfroml-1to O
Q=1Q
If uz0 then

Let u be such that a =u. or a_=-u.
If u>0 then Q=Q+P
Else Q=Q-P

Return Q

Securing /Against Side

Channel Attacks

‘The computation methods considered so far
depends on the input scalar

*Adversaries capable of side channel attacks, such
as a timing attack, can exploit this to learn secret
iInformation

*Using a Montgomery method modifies
multiplication algorithms in a simple way to take
fixed time independent of the input scalar size

- Performance decreased by a constant factor
- Montgomery ladder used for prime curves
-Dummy variable used for Koblitz curves

Parallel Scalar

Multiplication

‘Let k be an n-digit long scalar and suppose we
have 2™ processors with 2™<n

~|n binary representation for prime curves
~|n WINAF representation for Koblitz curves
‘We can break k into 2™ parts:

|
*Then compute the smaller products in parallel
k P)kz _1)k?PzQ?m)ngm_1)°°°)QT

Parallel Scalar

Multiplication

‘From these smaller products, we can then
recursively recombine the Q values to obtain

- For prime curves, we recombine via doub
i __ Ak A+ i+1
lez—2 Qj +Qj—1
~For Koblitz curves, we recombine via T

i k.| AIF i+
Q. ,=1""1Q"+Q"",
-We have Q °=kP

KP

INg

-|n general denote the recombination function

as Q',=f(Q",Q""))

Parallel Scalar

Multiplication

*The recombination steps can be represented as a

tree:

Q- Qaim | --- Q) Q;’
pN N Y
QT c Q7

Parallel Scalar

Multiplication

‘Putting this together, the algorithm for parallel
scalar multiplication is:

Input: P, k=d,||d’,_.||...||d}
Output: Q=kP
Q=0
for iI=1 to 2", in parallel
Qi=d, P
Fori=n-1to O
F(?r =i+l toi+11, In Belirallel
lezzf (QJ :Qj—l)
Return),

Parallel Scalar

Multiplication
‘Hypercube and tree topologies naturally suited

- Tree suitable for pipelining

- Hypercube could interweave multiple

multiplications together

‘A linear structure can also be used, but has worse
running time than a hypercube or tree

- Better asymptotic throug
‘Higher throughput with no s

nput than a tree

needup can also be

achieved by a simple division of processors, with
results distributed across processors

Parallel Scalar

Multiplication

*Messages exchanged in a hypercube with 2
Interweaved multiplications and 8 processors

/*
= - Round 1
oy —=00r) (1)) — (1)

Parallel Scalar

Multiplication

‘Messages exchanged while pipelining
multiplications in a tree

Parallel Scalar

Multiplication

‘Messages exchanged while pipelining
multiplications in a linear array

> —>>_,

Asymptotic Running Time. -

Sequential

‘In terms of point additions (A), point doublings (D),
field size (m), and processors (p)

- The tau operator is asymptotically more
efficient than other point operations

‘For a prime curve, m point doublings and on
average m/(1 + w) point additions are required for
a window size of w with 2%2 precomputation work

*Asymptotic running time is thus:
-General: O(mD+mA)
- Koblitz: O(mA)

Asymptotic Running Time. -

Hypercube & Tree

*First round computes multiplication of size m/p
sequentially, requiring O(m/p D + m/p A) time

*The I-th (of log p total) recombination round
requires 2' m/p point doublings and one addition

*Theoretical optimal speedup using m/4 processors

*Asymptotic parallel running time is thus:

-General: O(mD + (m/p + log p)A) when 2"'<m/4
O(mD + (log m)A) when 2">m/4

- Koblitz:. O((m/p + log p)A) when 2"<m/4
O((log m)A) when 2">m/4

Asymptotic Running Time. -

Linear

‘Each processor computes in parallel a sequential
multiplication of size m/p, requiring O(m/p) time

*Recombination requires O(m/p) point doublings
per processor, except the last one, and a single
point addition

*‘Asymptotic parallel running time is thus:
~General: O(mD + (m/p + p)A)
- Koblitz: O((m/p + p)A)

Asymptotic Throughput

‘Throughput in a tree Is determined by the
maximum of the root’'s computation time and the
leaves’ computation time:

-General: O(1 / max(m/p (D + A), m D)

- Kob
*Throug

itz: O(1 / (m/p A))

nput in a linear array is determined by the

computation time in a single node:
-General: O(1/ (m/p D + m/p A))
~Koblitz: O(1 / (m/p A))

Practical Running Time &

Throughput

‘Parallel overhead - O(log p) time for a tree or
hypercube and O(p) time for a linear array

- Network delays (MPI)

- Packing/unpacking overhead (MPI)

- Synchronization delays (OpenMP)
‘Constant factors impact running time

~\Window sizes vary based on subscalar size,
limiting speedup for regular multiplication

Practical Running Time &

Throughput

‘Seguential portion of multiplication — point
doubling or tau operator and scalar conversion

- arge sequential portion due to point doubling
cost for general curves limits speedup

- More efficient tau operator reduces sequential
portion, but sequential portion becomes more
significant with many processors

- Seguential portion more significant for regular
multiplication, further limiting speedup

Experimentali Parameters

*10 standard NIST curves: P-192, P-224, P-256, P-
384, P-521, K-163, K-233, K-283, K-409, K-571

*Number of cores varied from 1-128
‘Input form of scalar — NAF or binary

‘Number of simultaneous multiplications varied
from 1-16 (hypercube)

*Multiplication type — Montgomery or regular
‘Logical topologies — Hypercube, Tree, Linear
‘OpenSSL used to handle basic point operations
‘GMP/MPFR to handle large rationals/floats

Experimental

Setup

*16 core machines utilized for all tests at UB CCR:

= |ntel E5-2660

Xeon (dual 8 core)

~|nfiniband Network (when using >16 cores)
*MPI Thread Safety for Hybrid Approach

~Tree/hypercu

ne: MPl_THREAD_ SERIALIZED

~Linear: MP|]

'"HREAD MULTIPLE

‘Points and scalars generated at random

50,000 total mult
experiment

Iplications performed for each

Experimentali Setup

‘Linear and tree running time Is not measured
directly, but estimated

= Tree running time estimated by estimated by
summing average running time at each tree
level excluding the time spent waiting for other
Processors

~Linear running time estimated by summing the
the time spent in each node sequentially plus
the time spent in parallel

SequentiallRunning Time

140 -

120

100 -

40 A

20 ~

Sequential Running Time
Binary Input and Regular Multiplication

P-192

P-224 P-256 P-384 P-521
Curve

Sequential Running Time
Binary Input and Regular Multiplication

400
350 A
300 A
250 A

V]

£ 200 -
150 A
100 A

50 A

0-
K-163

K-233 K-283 K-409 K-571
Curve

*Koblitz curves (right) exhibit slower running times
due to less support in OpenSSL and binary curves
In general being better suited for hardware

Implementations

SequentiallRunning Time

Sequential Running Time

Binary Input and Montgomery Multiplication Sequential Running Time

Binary Input and Montgomery Multiplication

250 A 1400 -
1200 4
200 A
1000 -
“ 150 =
g 2800
]
- £
'_
100 A 600
400
50 -+
200
i i : ’ 5 0-
P-192 P-224 P-256 P-384 P-521 K-163 K-233 K-283 K-409 K-571
Curve
Curve

‘Montgomery methods up to 3.5 slower than
regular multiplications (previous)

‘Performance hit worse for Koblitz curves

SequentiallRunning Time

. :
Sefmental . pravemantOsag, NAk [aput Sequential % Improvement Using NAF Input

10

8 g
V] 6 -
o o
=
X 44

X 41
24 24
P-192 P-224 P-256 P-384 P-521 0- K-163 K-233 K-283 K-409 K-571
Curve Curve

‘Small improvement using NAF input
*Going forward, only binary input is presented
- Results for NAF input show slight improvement

Hypercube Speedup

MPI - Hypercube
Prime Curve Speedup
Single Multiplication - Regular Method

MPI - Hypercube
Koblitz Curve Speedup
Single Multiplication - Regular Method

— P-192 3.0
1.2 — K-163
— P-224 — k233
— K-283
— K-409
— K-571
—-—=~ Sequential

N

10 fmmm e e e e e S -

2.9

2.0 A

1.5:7

Speedup

0.5 A

i | 2 4 8 16 32 64 128 0.0

Number of Cores 1 2 4 8 16 32 64 128

Number of Cores

‘Large parallel overhead limits speedup for prime
curves in particular

- Worse than sequential except P-256 using 2
cores

Hypercube Speedup

MPI - Hypercube
Prime Curve Speedup
2 Simultaneous Multiplications - Regular Method

— P-192
— P-224
—— P-256
— P:=384
— P-521
-—- Sequential

R 1 0 eSS SIS SR SR S .. 5 b, SR, . SR
@
]
o
n
0.75 -

1 2 4 8 16 32 64
Number of Cores

128

4.0

3.5

3.0

2.5

Speedup

L5

1.0 A1

0.5

0.0

MPI - Hypercube
Koblitz Curve Speedup
2 Simultaneous Multiplications - Regular Method

2.0 A

— K-163
— K-233
— K-283
— K-409
— K5 T

- Sequ
/

1

2 4 8 16 32 64
Number of Cores

‘Interweaving worse than dividing processors

= Same holds for other configurations — further
graphs on simultaneous multiplications omitted

128

Hypercube Overhead

MPI - Hypercube
Prime Curve Network Overhead
Single Multiplication - Regular Method

MPI - Hypercube
Prime Curve Packing & Unpacking Overhead

100 Single Multiplication - Regular Method
— P-192 100
— P-224
—— P-256
Sl — P-384 80 -
— P-521
£
60 A (4]
b £ 601
: z
2 2
5 40 5
& f’g 40

]

o
[
o

_é

o
1

y I : - ; : 0 T T T T T T
1 2 4 8 16 32 64 128 1 > 4 3 16 30 64 128
Number of Cores
Number of Cores

*Overhead grows with number of cores

*OpenSSL optimizations for P-224 at expense of
packing/unpacking time explain its results

Hypercube Overhead

MPI - Hypercube
Koblitz Curve Network Overhead
Single Multiplication - Regular Method

MPI - Hypercube
Koblitz Curve Packing & Unpacking Overhead
Single Multiplication - Regular Method

100 100
— K-1
—_ K-Zgg -
— k283 — K-233
80 - — K-283
— K-409 80 4 2
— K571 — K-409
— K-571
£ o
60 -
= £ 60 A
g =
e 2
o Y
39 40 5 40
®
20 A1 20
0' T T T T T T 0
1 2 4 8 16 32 64 128 1 > 4 8 16 32 64 128

Number of Cores Number of Cores

‘More time spent on packing/unpacking overhead
for Koblitz curves

‘Generally less networking delays for Koblitz curves

Hypercube Speedup

MPI - Hypercube
Prime Curve Speedup
Single Multiplication - Montgomery Method

MPI - Hypercube
Koblitz Curve Speedup
Single Multiplication - Montgomery Method

1.6 - —— P-192 7

—— P-224 e s
— K-233
1. —— P-256 6
—— P-384 .
—— K-409
15 — P-521
21 54 — K571
—-== Sequential
R e e o
© 3
081 o
& 3-
0.6 -
0.4 21
0.2 - 195 e e S
0-0 1 I T T L 1 0
4 . * g 1 e o 128 1 2 4 8 16 32 64 128

Number of Cores Number of Cores

‘Better speedup using a Montgomery method

‘Prime curves show limited speedup due to larger
sequential portion

Tree Speedup

MPI - Tree

Estimated Prime Curve Speedup . “_MPI-Tree
Regular Method Estimated Koblitz Curve Speedup
3.0 Regular Method
— P-192 9
—_— P24 — K-163
2.5 84— K233
—— K-283
74— K-409
2.0 [=mm —— K-571
64 —-- Sequential
S
D 1.5 S5
o o
& g
24

1.0 1

0.5

0.0

1 3 7 15 31 63 127 0

Number of Cores 1 3 7 15 31 63 127

Number of Cores

‘Better speedup than equivalent hypercube as
communications spread out over more time

*Overhead/constant factors outweigh parallel
benefits for prime curves with <15 processors

Tree Speedup

P-521

K-571

MPI - Tree -~ MPI - Tree -
Estimated Prime Curve Speedup : .
Estimated Koblitz Curve Speedup

. Montgomery Method Montgomery Method

— P-192 —wE

— P-224]
(=t |

- —— K409

Sequential

Sequential

7 15 31 63 127

Number of Cores

Number of Cores

‘Better speedup using Montgomery method

Tree Throughput

MPI - Tree

Prime Curve Speedup in Throughput . MPI - Tree
Regﬁlar Mgthod e Koblitz Curve Speedup in Throughput
& Regular Method
— P-192
—— K-163
109 —— k233
—— K-283
— K-409
2 o 84 — K571
[=] s .
E] 2 —-==- Sequential
3 {=]
: 3
= = 64
£ =
= £
3 s
o =]
w
2_
T T T T T 0 I
1 3 7 15 31 63 127 : 1 : = > = =

Number of Cores

*Throughput continues to improve (except P-224)
as number of cores increased

‘Better throughput by using processors
sequentially, but worse speedup Iin some cases

Tree Throughput

MPI - Tree
Prime Curve Speedup in Throughput : MPI - Tree
- Montggmerprethod o Koblitz Curve Speedup in Throughput

Montgomery Method
— P-192

ughput

Speedup in Thro
Speedup in Throughput

1 3 7 15 31 63 127
Number of Cores

*Throughput continues to improve (except P-224)
as number of cores increased

‘Better throughput by using processors
sequentially, but worse speedup Iin some cases

Time Spent Waiting or on

Parallel Overhead In Tree

MPI - Tree
Prime Curve Overhead & Waiting Time at Each Level
31 Cores - Regular Method

MPI - Tree
Koblitz Curve Overhead & Waiting Time at Each Level
31 Cores - Regular Method

00
100
o
o f—
; o £ g
[+
=
i 5]
®
< 60 -{qé\ 60 -
é g
o)
&
L 4 -] &
2 Q GCJ 40 A
(V2] o
v
— P-192
£ o —
= — P-224 £ K-163
< 20 = ——— K-233
—— P-256 & 20-
© =} — i3
—— P-384 ES S—
S K-409
5 — K-571
0 1 2 3 4 0 = = =
Tree Level 0 : E 3

Tree Level

‘Large amount of idle time, waiting for other
processors at non-leave levels

*Similar results for other configurations

Linear Speedup

MPI - Linear
Estimated Prime Curve Speedup
Regular Method

MPI - Linear
Estimated Koblitz Curve Speedup
Regular Method

2.00 3.0
— P-192
1.75 4 —_ P-224
— P-256 2.5 -
— P-384
120 — P521
=== Sequential 2.0 A
1.25 A
o o
=] 3
® 1.00 D 1.5
7] QU
o (=8
wv w
.75
1.0 A
0.50 -
0.5 1
0254
0.00 T T T T T T | 0.0 T
il 2 4 8 16 32 64 128 1 2

— K-163
— K-233
— K-283
— K-409
— K-571
—== Sequential

Number of Cores

*Strictly worse than sequential for
‘For Koblitz curves, 2 cores give s

4 8 16 32 64 128
Number of Cores

orime curves

needup comparable

to 2 core hypercube or 3 core tree and worse

otherwise

Linear Speedup

MPI - Linear

Estimated Prime Curve Speedu : MPI - Linear
P P Estimated Koblitz Curve Speedup
Montgomery Method
2.00 Montgomery Method
— P-192 5
— P-224 == Ke168
1.75 o — K-233
- . =
1.50 p-521 - K-571
—-== Sequential .
1.25 —-—- Sequential
o
3
D 1.00 4
]
Q.
w
0.75
0.50
0.25
0-00 T T T T T L}
1 2 4 8 16 32 64 128

1 2 4 8 16 32 64 128
Number of Cores Number of Cores

‘Montgomery method shows marginal speedup for
prime curves, worse than hypercube or tree

‘Better speedup for some Koblitz curves for 2-4 cores
compared to 2-4 core hypercube or 3-7 core tree

Linear Throughput

MPI - Linear

: ; MPI - Linear
FURE CUNReegEE?dﬁgtwoghroughpUt Koblitz Curve Speedup in Throughput
9 Regular Method
— P-192 12
gl|l— poza — K-163
—— P-256
74 — P-384 19
- — P-521
% 64 —=- Sequential &)

(%]
1 1

Speedup in Throughput
[#)]

Speedup in Thro
ey
=Y

o = 28] w
| L 1

il 2 4 8 16 32 64 128 0
Number of Cores

*Throughput is generally a bit better than a tree

= Strictly better to distribute multiplications
sequentially on prime curves using since no
speedup advantages and worse throughput

Linear Throughput

MPI - Linear

’ : MPI - Linear
r ri p)
s C;xnrc\;stSpeedupN:nt'tl;thUthut Koblitz Curve Speedup in Throughput
ey e M Method
14 ontgomery Metho
— P-192
—_ p224 — K-163
12 T P‘256 30 ol | — K‘233
—— P-384 — K-283
— K-409
+ 104 — P‘521 |
3 i o 251 — K571
- -== Sequential =] _
o 2 Sequential
3 g- o
£ 3 201
e =
c =
‘a =
s °] &, 15
8 =
A
i & 101
21 "
0 T T T T T . | emiwm e - -
1 2 4 8 16 32 64 128 0 T . T T . ;

1 2 4 8 16 32 64 128
Number of Cores

*Slightly better throughput than a tree when using few
cores

Number of Cores

Linear Overhead

MPI - Linear
Prime Curve P-521 Overhead
Regular Method - 8 Cores

MPI - Linear
Koblitz Curve Overhead

100 Regular Method - 8 Cores

[s —— i 0 K-163
- — P224 = K:233
o —— P-256 3
£ 80 - o — K-283
aj — P-384 < 80 — K400
3 — P-521 o
c é —— K-571
o =
S 60 e
o S 60 -
= o
5 S
= =
T 40 A »
g 40 -
) e Q
g e v
E 20 E \
5 = 20+ ——
=

L
0 1 L T T T L
0 1 2 3 4 5 6 7 0

0 1 2 3 4 5 6 7
re Number
EansNimbe Core Number

‘Generally linear overhead takes up less overall time
*Similar results for other configurations

MPI Conclusions

‘Packing/unpacking time for some curves and
network delays limit achievable speedup and
throughput

‘Simultaneous communication can cause congestion
limiting speedup, as seen with a tree achieving
better speedup than an equivalent hypercube

*Trees generally offer good balance between
speedup and throughput

‘Linear array never good for prime curves, and
better than a tree for Koblitz curves with a small
number of cores available

Challenges Moving to a

HybridiApproeach

‘Explicit synchronization required in OpenMP

‘Results from MPI indicate limiting MPI calls could
be beneficial

-\Where possible, MPI calls are merged, but this
requires additional synchronization

‘Where to use OpenMP vs MPI?
=Based on rounds in hypercube topology
-Based on level in tree topology
- Based on neighbors In linear topology

Hybrid Hypercube with 2
MPI nodes and 4 threads

Round 1
Round 2
Round 3

T

!

I

T

=
=
E 3
._huu.r
v O
W._l
e4
md
- 3
S
S5
2 0
€L

@

I

I

T

I

Hybrid Cinearwithr2 MPI
nodes and 2 threads

Hypercube Speedup

Hybrid - Hypercube Hybrid - Hypercube
. Prrmg Curve Speedup Koblitz Curve Speedup

e Single Multiplication - Regular Method 0 Single Multiplication - Regular Method
‘ — K-163
— K-233
1.2 1 52 — Kk-283
—— K-409
301 — K571

1.0 1

- : —-—=- Sequential
2.5
2.0 /

7
1.5 /

S T i e

a 0.8 A o
=) S
- S
]]
2 g
n 0.6 - wn

0.4 1

0.2 1

0.5

0.0 T T T T T T 0‘0 T T T T T T
1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128

Number of Cores Number of Cores

‘Better speedup than MPI until 16 cores for prime
curves and 8-16 cores for Koblitz curves

- Performance impact for >8 cores may be due to
frequent cache misses between processors

Hypercube Overhead

Hybrid - Hypercube
Prime Curve Network Overhead
Single Multiplication - Regular Method

Hybrid - Hypercube
Prime Curve Packing, Unpacking, & Synchronization Overhead
Single Multiplication - Regular Method

100 -
— P-192
S e — P-192
—— P-256 - P24
80 - — P-256
- 0] = raa
— P-521
g
60 - v
= £ 60 A
g %
a e
(o] o Y
2 40 5 401
=
20 A 36
0 Ll 1 T T Ll 1 0_
b ¢ = 4 15 2 b A2t 1 2 4 8 16 32 64 128

Number of Cores Number of Cores

‘OpenMP has less overnead compared to MPI

‘Network delays with hybrid approach (>16 cores)
quickly become significant

Hypercube Overhead

Hybrid - Hypercube Hybrid - Hypercube

Koblitz Curve Network Overhead ; : : Lo
Single Multiplication - Regular Method Koblitz Curve Packing, Unpacking, & Synchronization Overhead
100 Single Multiplication - Regular Method
—— K-163 100
— K233 = k162
— K283 — K-233
80 - —— K-283
— K-409 80 4 -
— K571 — K-409
—— K-571
£ v
60
b £ 601
g =
; 2
(o] i Y
3 5 40-
ES
20 55,4
0 - - - - - . 0_%@
i i) Nuﬁ’lber of Clo?es * o i z 2 4 8 16 # o L2
Number of Cores

‘Montgomery method shows less networking
overhead, and more time spent on other overhead

Hypercube Speedup

Hybrid - Hypercube
Prime Curve Speedup
Single Multiplication - Montgomery Method

Hybrid - Hypercube
Koblitz Curve Speedup

3.0 Single Multiplication - Montgomery Method
— P-192 8 =
— P-224 = |<:233
254 — P-256 7 K-283
i K-409
—— P-521 6 i
5 4 — K-571
' -=-= Sequential
5 o
o
% %
1.5 -
ﬁ D 4-
& 8
w
1.0 - 31
2 -l
0.5
1 ek e e T ——————————— a —————————————
0-0 Ll Ll T T 1 1 0
1 2 4 8 16 32 64 128 1 3 1 2 e = o =

Number of Cores Number of Cores

‘Montgomery methods offer better speedup up to
8-16 cores with an initial performance hit at 2
cores compared to MPI

Tree Speedup

Hybrid - Tree

Estimated Prime Curve Speedu . " Hybrid - Tree
Regular Method i i Estimated Koblitz Curve Speedup
200 Regular Method
— P-192 3.0 K163
N s Ejig —— K-233
—— P-384 2.5 1 - K-283
1.50 4 — P71 — K-409
=== Seqguential — K-571 .
N 28 -~-- Sequential
o
E s
E 1.00 A E -
7 o
93]

0.75 A1

1.0
0.50

0.25: 0.5 4

0.00

1 3 7 15 31 63 127 0.0

Number of Cores 1 3 7 15 31 63 127

Number of Cores

*Tree performs worse than in MPI

= Synchronization costs for a tree greater than
speedup attainable from the parallel algorithm

Tree Speedup

Hybrid - Tree

Estimated Prime Curve Speedu __Hybrid-Tree
¥ 2 Estimated Koblitz Curve Speedup
Montgomery Method
3.0 Montgomery Method
—— P-192 5
— K-163
— P-224
254 —— P-256 - :;g:
g 41 — s
— P-521 i
. — K-571
2.0 Sequential M o—
o 3 p
3 =
o 1.5+ 5
& g
w

1.0 1

0.5

0.0

: - ; b ¢ 0 T T L T L]
1 3 7 15 31 63 127 7 15 31 63 127
Number of Cores
Number of Cores

*Tree performs worse than in MPI

= Synchronization costs for a tree greater than
speedup attainable from the parallel algorithm

Tree Throughput

Hybrid - Tree

Prime Curve Speedup in Throughput , Hybrid - Tree
Regﬁlar Mgthod ghp Koblitz Curve Speedup in Throughput
5 Regular Method
— P-192 7 —r
—— P-224 i
— K-233
—— P-256 61 i
41|— p-384
B — K-409
2 —-==- Sequential L8 — K571 .
= 2 === Sequential
=10 B o
o >
£ o
=
£
Q
5 27
@
1F]
o
wv
1 B .. e —
0 1 T 1 L L
1 3 7 15 31 63 127 0

il 3 b 15 31 63 127
Number of Cores Number of Cores

*Throughput for some curves comparable to
throughput in MPI up to 15 cores

= Synchronization delays with >15 cores limits
throughput

Tree Throughput

Hybrid - Tree
Prime Curve Speedup in Throughput
Montgomery Method

— P-192

ughput

Speedup in Thro

1 3 7 15 31 63 127
Number of Cores

Speedup in Throughput

0

Hybrid - Tree
Koblitz Curve Speedup in Throughput
Montgomery Method

— K-163
—_— K-233
— K-283
— K-409
— K-571
—-== Sequential

*Throughput for some Koblitz curves comparable
to throughput in MPI up to 15 cores

= Synchronization delays with >15 cores limits

throughput

Time Spent Waiting or on

Parallel Overhead In Tree

Hybrid - Tree Hybrid - Tree
rim r verh Waiting Time at Each Level . Pl ;
RRmes e gleCofeasd-sF;e ?Jllalr?\delthc?da S Koblitz Curve Overhead & Waiting Time at Each Level

31 Cores - Regular Method

100

80 -

Overhead or Waiting

60

B
o
1

[
o
1

% of Time Spent on

— K-409
— K571

T T T 0 ; ; :

0 1 2 3 4 0 1 5 3 4
Tree Level

Tree Level

*Significant overhead costs and idle time (Koblitz
curves)

= Additional costs incurred from setting locks
used for synchronization

Linear Speedup

Hybrid - Linear

Estimated Prime Curve Speedup HYHTC - Lingar

Estimated Koblitz Curve Speedup

Regular Method
2.00 = " Regular Method
— P-192
—— P-224 e
1.75 1 P-256 K-233
— P-384 —
-4 ; 4 1]
= =
—-== Sequential
1.25 A
a 31
S =8
D 1.00 - B
g_ w
g =1
0.75 s
0.50 A
1 -
0.25 |
0.00 T T T T T T 0 —
1 2 4 8 16 32 64 128 5 > 4 8 16 32 64 128

Number of Cores Number of Cores

‘Better speedup than in MPI with <16 cores for prime
curves and 8 cores for Koblitz curves

- For prime curves, parallel overnead overwhelms
algorithm’s speedup when using 2-4 cores

Linear Speedup

Hybrid - Linear .
Estimated Prime Curve Speedup Hybrid - Linear

Estimated Koblitz Curve Speedu
a0 Montgomery Method Montgomery Methog P
T 9
— P224 .l
351 — PG 8 — K-233
— P-384 —
507 — p-521 7 i
— K-571
2.5 6 -=- Sequential
g. o
© 2.0 3 7
& 24
(V2]

1.5

3 .
1.0
2 -
0.5
L e e e A - - T
0.0 Ll T T T T T
1 2 4 8 16 32 64 128 0

Number of Cores 1 2 4 8 16 32 64 128

Surprisingly better speedup than a hypercube
-|_ess synchronization costs
- Performance hit at >8 cores

Linear Throughput

Hybrid - Linear

: ; Hybrid - Linear
Prime Curve Speedup in Throughput ; :
Regular Method Koblitz Cur\r{e Speedup in Throughput
10 egular Method
— P-192 7 =
— P-224 — K

— P-256
81|— p-384
— P-521
=== Sequential

Speedup in Throughput

: ; : y I ; 0 T T T T T T
il 2 4 8 16 32 64 128 1 5 4 8 16 37 64 128
Number of Cores
Number of Cores

‘Generally better throughput than when using MPI
with linear array

- Performance hit when hybrid approach is used
and when two processors per compute node used

Linear Throughput

Hybrid - Linear
Prime Curve Speedup in Throughput
Montgomery Method

Hybrid - Linear
Koblitz Curve Speedup in Throughput
Montgomery Method

20.0q —— K-163
— K-233
17.541 — K-283
— K-409
o 1504 — K571
3 G .
a —== Sequential
£
g)
3 12,5
L
‘_
£ 10.0 -
(o}
=]
®
Y o
o
wv
5.0 -
2.5
1 2 4 8 16 32 64 128 0.0 '
1 2 4 8 16 32 64 128

Number of Cores

‘Better throughput when using <8-16 cores than in
MPI

- Performance hit when hybrid approach is used
and when two processors per compute node used

Linear Overhead

Hybrid - Linear
Prime Curve P-521 Overhead :
Regular Method - 32 Cores Koblitz Curve Overhead

Hybrid - Linear

100 100 Regular Method - 32 Cores
— K-163
E = — K-233
£ 80 E — K-283
2 80 —— K-409
o 3 —— K-571

60 -

=)}
o
L

40 -

B
o
1

N

% of Time Spent Waiting or on

[
o
L

% of Time Spent Waiting or on Over
[
o

0

0 5 10 15 20 25 30 0

Core Number 0 5 10 15 20 25 30

Core Number

‘Large overhead when utilizing multiple MPI nodes for
prime curves corresponding to network delays

‘Koblitz have nearly constant overhead for all cores
with spikes near MPI node boundaries

Hybrid Conclusions

‘Synchronization delays can be worse than
networking delays in MPI in some cases

*Observed performance moving to 16 cores
significantly impacted the hybrid approach

- Frequent cache misses using multiple
processors may be the cause for these results

‘Linear array showed better speedup than other
structures, but worse throughput than in MPI

~|ess overhead compared to other structures
*Merging MPI calls may not have been beneficial

Overall Conclusions

‘Best logical structure depends on number of cores
available, desired throughput, desired speedup, and
curve type

- Koblitz curves better suited for parallelization

= Splitting cores sequentially best for maximizing
throughput

~MPI tree gives generally good balance between
speedup and throughput, for many cores

-OpenMP linear array gives generally good
balance between speedup and throughput for few
cores

Future & Related Work

‘Large amount of time In a tree Is spent waiting for

other
POSSI

‘Ccom

processors for non-leaves, and it may be
nle to merge some non-leave nodes

nining topologies may yield better throughput

results In some cases

‘Parallelism at the point or field level is also possible
using a fixed number of processors

‘Multiple multiplications on the same point can use
globally precomputed values for better performance

- Key generation

Future & Related Work

‘Better results can likely be achieved if suspected
frequent cache misses due to dual-processor
compute nodes are accounted for

-One method to account for this is to use 2 MPI
nodes per server (1 per processor), with 8 threads
used per MPI node so MPI takes care of it

‘Not merging MPI calls may be better suited for
hypercubes and trees in the hybrid approach

References

‘Keke Wu, Huiyun LI, Dingju Zhu: Fast and scalable
parallel processing of scalar multiplication in elliptic curve
cryptosystems. Security and Communication Networks
5(6): 648-657 (2012)

‘Hankerson, Darrel R., Scott A. Vanstone, and A. J.
Menezes. Guide to elliptic curve cryptography. New York:
Springer, 2003. Print.

‘Jerome A. Solinas: Efficient Arithmetic on Koblitz Curves.
Des. Codes Cryptography 19(2/3): 195-249 (2000)

‘Recommended Elliptic Curves For Federal Government
Use. NIST Computer Security Resource Center. 1999.

