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Motivation

*Elliptic curves are commonly used in public-key
cryptography

- Digital Signatures

-Symmetric Key Exchange

*Scalar multiplication of points on a curve is the
most costly operation performed



Background'=Finite Fields

‘A finite field on p" is the set of integers in {0, p"},
where p Is a prime and n is some positive integer

*Two types of finite fields are of interest
~Prime fields, where n=1
- Uses regular arithmetic, modulo a prime p
-Binary fields, where p=2

- Uses polynomial arithmetic, modulo an
irreducible polynomial p



Background'—"Poelynomial

Arithmetic on a Finite Field

-The binary number b__|[b__]|...||b, represents the
polynomial}." b, x

*Arithmetic operations defined in terms of
polynomials, with coefficients computed modulo 2

‘Squaring is efficiently achieved on binary fields

-|nserting a O between consecutive bits of a
number yields its square

~O(n) time compared to O(n?) time for
multiplication



Background'="Non-

Adjacent Forms

‘A non-adjacent form (NAF) is an alternate
representation for an integer k such that k= Z k2
where ke€{0, +1} and no two consecutive dlglts are

nonzero

-A windowed NAF (WNAF) for k is the
representation k:Z’:; k2" such that |k| < 2" for a

window size w, k. is 0 or odd, and for any w
consecutive digits, at most one is honzero

I



Elliptic Curves

*General elliptic curve equation
y’+axy +by=x>+cx’+dx +e
*Two general types of curves are of interest:
~-Prime curves: y’=x"+ax+b
~-Binary curves: y +xy=x"+ax’+b

= Binary curve with certain properties called
Koblitz curves allows field squaring to
replace less efficient point doubling in scalar
multiplication, which will be particularly
suitable for a parallel implementation



Elliptic Curve Coordinates

_ ‘Natural to think of curves and points in terms of
affine coordinates (X, y) for geometric intuition
and to describe algebraic properties

‘Computation often more efficient when projecting
on a higher dimensional space

~ie. Projective coordinates (X, y, z) from the
affine coordinates (x/z, y/z)

‘Compressed coordinates can be used to
transmit points with minimal size

- The x affine coordinate and a bit signifying the
corresponding y value to use



Prime Curves

‘For a prime curye, if we have nonzero
determinant 4 a>+27b>#0(mod p) we can define
addition of points and form an abelian group:

= Closure

- Associativity

- Commutativity

|

|

dentity E
nverse E

ement (O, “point at infinity”)
ement (-P for a point P)

*Two basic point operations: point addition and
point doubling



Prime Curves — Geometric
Intuition

Elliptic Curve with a=0, b=1




Prime Curves — Scalar

Multiplication

‘Basic approach is the “double-and-add” method
to compute kP given k=b__[|b__||...]|b,the binary

representation of k

Input: P, k=b__[|b__||...||b,
Output: Q = kP
Q=0
For i from O to n-1
Q=2Q
If b=1 then Q=Q+P

Return Q



Prime Curves — Scalar

Multiplication

‘More efficient by a constant factor to use a wNAF
method:

Input: P, k
Output: Q =kP -1 |
Compute WNAF of k= Z,_O k.2
Precompute jP for j={1, 3, ..., 2*1-1}
Q=0
ForifromI-1to 0
Q=2Q
if k>0 then Q = Q+kP
else if k#0 then Q=Q-kP
Return Q



Binary Curves

‘Binary curves require b#0 to define an abelian
group

‘General binary curves use same algorithms as
prime curves to compute scalar multiplication

‘Koblitz curves have a property which allows more
efficient computation of scalar multiplication

~Given a point (X, y) on the curve, (x2, y?) is
also on the curve, and this can be used to
replace point doubling by field squaring



Koblitz Curves — 1t Operator

‘Define the T operator such that 1(x, y)=(x?, y?)
and 10=0

- Recall that squaring on a finite field over 2™
can be computed efficiently

*Given a point P, we have (12+2)P=utP where p=(-
1)+2 where T is the 1 operator applied j times

‘From the above result, we can consider t as the
complex number satisfying 14+2=pt

- 1=(u+v—=7)/2
~Allows a scalar to be expressed in terms of 1



Koblitz Curves — WTtNAF

A number K=r +r.T on the ring Z [t | has a wiNAF
representation k = Z u.t' where

uz_{ 0, Oips iz, O(‘_(ZW 1—1)}
- The a=B.+y1 for each window size are chosen

so that each precomputed point requires at
most a single point addition and a single
application of T during precomputation



Koblitz Curves — wTtNAF

~ *Computing the wiNAF representation for a scalar
results in a representation that is too long In
general — ~2m digits for an m-bit scalar

*To get a suitable length representation, find a
complex number p' such that p'=k (mod 0) where
0=(T" — 1)/(T — 1) using partial modulo reduction

- The equivalence ensures that p'P=kP, where
p' has a sufficiently short representation
bounded In length by m+a+3

- High probability of finding p, the shortest
representation based on a chosen parameter C



Koblitz Curves — wWTtNAF

Multiplication
‘The wtNAF method is as follows:

Input: P, p'=Y._ u
Output: Q=p'P=kP
Precompute P =a P for ue{+1l, 3, ..., £(2"**-1)}
Q=0
Forlfroml-1to O
Q=1Q
If uz0 then

Let u be such that a =u. or a_=-u.
If u>0 then Q=Q+P
Else Q=Q-P

Return Q



Securing /Against Side

Channel Attacks

‘The computation methods considered so far
depends on the input scalar

*Adversaries capable of side channel attacks, such
as a timing attack, can exploit this to learn secret
iInformation

*Using a Montgomery method modifies
multiplication algorithms in a simple way to take
fixed time independent of the input scalar size

- Performance decreased by a constant factor
- Montgomery ladder used for prime curves
-Dummy variable used for Koblitz curves



Parallel Scalar

Multiplication

‘Let k be an n-digit long scalar and suppose we
have 2™ processors with 2™<n

~|n binary representation for prime curves
~|n WINAF representation for Koblitz curves
‘We can break k into 2™ parts:

|
*Then compute the smaller products in parallel
k P)kz _1 )k?PzQ?m)ngm_1)°°°)QT



Parallel Scalar

Multiplication

‘From these smaller products, we can then
recursively recombine the Q values to obtain

- For prime curves, we recombine via doub
i __ Ak A+ i+1
lez—2 Qj +Qj—1
~For Koblitz curves, we recombine via T

i k.| AIF i+
Q. ,=1""1Q"+Q"",
-We have Q °=kP

KP

INg

-|n general denote the recombination function

as Q',=f(Q",Q""))



Parallel Scalar

Multiplication

*The recombination steps can be represented as a

tree:

Q- Qaim | --- Q) Q;’
pN N Y
QT c Q7




Parallel Scalar

Multiplication

‘Putting this together, the algorithm for parallel
scalar multiplication is:

Input: P, k=d,||d’,_.||...||d}
Output: Q=kP
Q=0
for iI=1 to 2", in parallel
Qi=d, P
Fori=n-1to O
F(?r =i+l toi+11, In Belirallel
lezzf (QJ :Qj—l)
Return ),



Parallel Scalar

Multiplication
‘Hypercube and tree topologies naturally suited

- Tree suitable for pipelining

- Hypercube could interweave multiple

multiplications together

‘A linear structure can also be used, but has worse
running time than a hypercube or tree

- Better asymptotic throug
‘Higher throughput with no s

nput than a tree

needup can also be

achieved by a simple division of processors, with
results distributed across processors



Parallel Scalar

Multiplication

*Messages exchanged in a hypercube with 2
Interweaved multiplications and 8 processors

/\*
= - Round 1
oy —=00r) (1)) — (1)




Parallel Scalar

Multiplication

‘Messages exchanged while pipelining
multiplications in a tree




Parallel Scalar

Multiplication

‘Messages exchanged while pipelining
multiplications in a linear array

_> —>_>_,



Asymptotic Running Time. -

Sequential

‘In terms of point additions (A), point doublings (D),
field size (m), and processors (p)

- The tau operator is asymptotically more
efficient than other point operations

‘For a prime curve, m point doublings and on
average m/(1 + w) point additions are required for
a window size of w with 2%2 precomputation work

*Asymptotic running time is thus:
-General: O(mD+mA)
- Koblitz: O(mA)



Asymptotic Running Time. -

Hypercube & Tree

*First round computes multiplication of size m/p
sequentially, requiring O(m/p D + m/p A) time

*The I-th (of log p total) recombination round
requires 2' m/p point doublings and one addition

*Theoretical optimal speedup using m/4 processors

*Asymptotic parallel running time is thus:

-General: O(mD + (m/p + log p)A) when 2"'<m/4
O(mD + (log m)A) when 2">m/4

- Koblitz:. O((m/p + log p)A) when 2"<m/4
O((log m)A) when 2">m/4



Asymptotic Running Time. -

Linear

‘Each processor computes in parallel a sequential
multiplication of size m/p, requiring O(m/p) time

*Recombination requires O(m/p) point doublings
per processor, except the last one, and a single
point addition

*‘Asymptotic parallel running time is thus:
~General: O(mD + (m/p + p)A)
- Koblitz: O((m/p + p)A)



Asymptotic Throughput

‘Throughput in a tree Is determined by the
maximum of the root’'s computation time and the
leaves’ computation time:

-General: O(1 / max(m/p (D + A), m D)

- Kob
*Throug

itz: O(1 / (m/p A))

nput in a linear array is determined by the

computation time in a single node:
-General: O(1/ (m/p D + m/p A))
~Koblitz: O(1 / (m/p A))



Practical Running Time &

Throughput

‘Parallel overhead - O(log p) time for a tree or
hypercube and O(p) time for a linear array

- Network delays (MPI)

- Packing/unpacking overhead (MPI)

- Synchronization delays (OpenMP)
‘Constant factors impact running time

~\Window sizes vary based on subscalar size,
limiting speedup for regular multiplication



Practical Running Time &

Throughput

‘Seguential portion of multiplication — point
doubling or tau operator and scalar conversion

- arge sequential portion due to point doubling
cost for general curves limits speedup

- More efficient tau operator reduces sequential
portion, but sequential portion becomes more
significant with many processors

- Seguential portion more significant for regular
multiplication, further limiting speedup



Experimentali Parameters

*10 standard NIST curves: P-192, P-224, P-256, P-
384, P-521, K-163, K-233, K-283, K-409, K-571

*Number of cores varied from 1-128
‘Input form of scalar — NAF or binary

‘Number of simultaneous multiplications varied
from 1-16 (hypercube)

*Multiplication type — Montgomery or regular
‘Logical topologies — Hypercube, Tree, Linear
‘OpenSSL used to handle basic point operations
‘GMP/MPFR to handle large rationals/floats




Experimental

Setup

*16 core machines utilized for all tests at UB CCR:

= |ntel E5-2660

Xeon (dual 8 core)

~|nfiniband Network (when using >16 cores)
*MPI Thread Safety for Hybrid Approach

~Tree/hypercu

ne: MPl_THREAD_ SERIALIZED

~Linear: MP| ]

'"HREAD MULTIPLE

‘Points and scalars generated at random

50,000 total mult
experiment

Iplications performed for each



Experimentali Setup

‘Linear and tree running time Is not measured
directly, but estimated

= Tree running time estimated by estimated by
summing average running time at each tree
level excluding the time spent waiting for other
Processors

~Linear running time estimated by summing the
the time spent in each node sequentially plus
the time spent in parallel



SequentiallRunning Time
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*Koblitz curves (right) exhibit slower running times
due to less support in OpenSSL and binary curves
In general being better suited for hardware

Implementations




SequentiallRunning Time
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‘Montgomery methods up to 3.5 slower than
regular multiplications (previous)

‘Performance hit worse for Koblitz curves




SequentiallRunning Time

. :
Sefmental . pravemantOsag, NAk [aput Sequential % Improvement Using NAF Input

10

8 g
V] 6 -
o o
=
X 44

X 41
24 24
P-192 P-224 P-256 P-384 P-521 0- K-163 K-233 K-283 K-409 K-571
Curve Curve

‘Small improvement using NAF input
*Going forward, only binary input is presented
- Results for NAF input show slight improvement



Hypercube Speedup
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Prime Curve Speedup
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‘Large parallel overhead limits speedup for prime
curves in particular

- Worse than sequential except P-256 using 2
cores



Hypercube Speedup
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= Same holds for other configurations — further
graphs on simultaneous multiplications omitted
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Hypercube Overhead
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*Overhead grows with number of cores

*OpenSSL optimizations for P-224 at expense of
packing/unpacking time explain its results



Hypercube Overhead
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‘More time spent on packing/unpacking overhead
for Koblitz curves

‘Generally less networking delays for Koblitz curves



Hypercube Speedup
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‘Better speedup using a Montgomery method

‘Prime curves show limited speedup due to larger
sequential portion



Tree Speedup
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‘Better speedup than equivalent hypercube as
communications spread out over more time

*Overhead/constant factors outweigh parallel
benefits for prime curves with <15 processors



Tree Speedup
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‘Better speedup using Montgomery method



Tree Throughput
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*Throughput continues to improve (except P-224)
as number of cores increased

‘Better throughput by using processors
sequentially, but worse speedup Iin some cases



Tree Throughput
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*Throughput continues to improve (except P-224)
as number of cores increased

‘Better throughput by using processors
sequentially, but worse speedup Iin some cases



Time Spent Waiting or on

Parallel Overhead In Tree
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‘Large amount of idle time, waiting for other
processors at non-leave levels

*Similar results for other configurations



Linear Speedup
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Linear Speedup
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‘Montgomery method shows marginal speedup for
prime curves, worse than hypercube or tree

‘Better speedup for some Koblitz curves for 2-4 cores
compared to 2-4 core hypercube or 3-7 core tree



Linear Throughput
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*Throughput is generally a bit better than a tree

= Strictly better to distribute multiplications
sequentially on prime curves using since no
speedup advantages and worse throughput



Linear Throughput
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Linear Overhead

MPI - Linear
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‘Generally linear overhead takes up less overall time
*Similar results for other configurations



MPI Conclusions

‘Packing/unpacking time for some curves and
network delays limit achievable speedup and
throughput

‘Simultaneous communication can cause congestion
limiting speedup, as seen with a tree achieving
better speedup than an equivalent hypercube

*Trees generally offer good balance between
speedup and throughput

‘Linear array never good for prime curves, and
better than a tree for Koblitz curves with a small
number of cores available



Challenges Moving to a

HybridiApproeach

‘Explicit synchronization required in OpenMP

‘Results from MPI indicate limiting MPI calls could
be beneficial

-\Where possible, MPI calls are merged, but this
requires additional synchronization

‘Where to use OpenMP vs MPI?
=Based on rounds in hypercube topology
-Based on level in tree topology
- Based on neighbors In linear topology



Hybrid Hypercube with 2
MPI nodes and 4 threads

Round 1
Round 2
Round 3
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Hybrid Cinearwithr2 MPI
nodes and 2 threads




Hypercube Speedup
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‘Better speedup than MPI until 16 cores for prime
curves and 8-16 cores for Koblitz curves

- Performance impact for >8 cores may be due to
frequent cache misses between processors



Hypercube Overhead
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‘OpenMP has less overnead compared to MPI

‘Network delays with hybrid approach (>16 cores)
quickly become significant



Hypercube Overhead
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‘Montgomery method shows less networking
overhead, and more time spent on other overhead



Hypercube Speedup

Hybrid - Hypercube
Prime Curve Speedup
Single Multiplication - Montgomery Method

Hybrid - Hypercube
Koblitz Curve Speedup

3.0 Single Multiplication - Montgomery Method
— P-192 8 =
— P-224 = |<:233
254 — P-256 7 K-283
i K-409
—— P-521 6 i
5 4 — K-571
' -=-= Sequential
5 o
o
% %
1.5 -
ﬁ D 4-
& 8
w
1.0 - 31
2 -l
0.5
1 ek e e T ——————————— a —————————————
0-0 Ll Ll T T 1 1 0
1 2 4 8 16 32 64 128 1 3 1 2 e = o =

Number of Cores Number of Cores

‘Montgomery methods offer better speedup up to
8-16 cores with an initial performance hit at 2
cores compared to MPI



Tree Speedup
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*Tree performs worse than in MPI

= Synchronization costs for a tree greater than
speedup attainable from the parallel algorithm



Tree Speedup
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*Tree performs worse than in MPI

= Synchronization costs for a tree greater than
speedup attainable from the parallel algorithm



Tree Throughput
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*Throughput for some curves comparable to
throughput in MPI up to 15 cores

= Synchronization delays with >15 cores limits
throughput



Tree Throughput
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*Throughput for some Koblitz curves comparable
to throughput in MPI up to 15 cores

= Synchronization delays with >15 cores limits

throughput
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*Significant overhead costs and idle time (Koblitz
curves)

= Additional costs incurred from setting locks
used for synchronization



Linear Speedup

Hybrid - Linear

Estimated Prime Curve Speedup HYHTC - Lingar

Estimated Koblitz Curve Speedup

Regular Method
2.00 = " Regular Method
— P-192
—— P-224 e
1.75 1 P-256 K-233
— P-384 —
-4 ; 4 1 ]
= =
—-== Sequential
1.25 A
a 31
S =8
D 1.00 - B
g_ w
g =1
0.75 s
0.50 A
1 -
0.25 |
0.00 T T T T T T 0 —
1 2 4 8 16 32 64 128 5 > 4 8 16 32 64 128

Number of Cores Number of Cores

‘Better speedup than in MPI with <16 cores for prime
curves and 8 cores for Koblitz curves

- For prime curves, parallel overnead overwhelms
algorithm’s speedup when using 2-4 cores




Linear Speedup
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Surprisingly better speedup than a hypercube
-|_ess synchronization costs
- Performance hit at >8 cores



Linear Throughput
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‘Generally better throughput than when using MPI
with linear array

- Performance hit when hybrid approach is used
and when two processors per compute node used



Linear Throughput
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‘Better throughput when using <8-16 cores than in
MPI

- Performance hit when hybrid approach is used
and when two processors per compute node used



Linear Overhead
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‘Large overhead when utilizing multiple MPI nodes for
prime curves corresponding to network delays

‘Koblitz have nearly constant overhead for all cores
with spikes near MPI node boundaries



Hybrid Conclusions

‘Synchronization delays can be worse than
networking delays in MPI in some cases

*Observed performance moving to 16 cores
significantly impacted the hybrid approach

- Frequent cache misses using multiple
processors may be the cause for these results

‘Linear array showed better speedup than other
structures, but worse throughput than in MPI

~|ess overhead compared to other structures
*Merging MPI calls may not have been beneficial



Overall Conclusions

‘Best logical structure depends on number of cores
available, desired throughput, desired speedup, and
curve type

- Koblitz curves better suited for parallelization

= Splitting cores sequentially best for maximizing
throughput

~MPI tree gives generally good balance between
speedup and throughput, for many cores

-OpenMP linear array gives generally good
balance between speedup and throughput for few
cores



Future & Related Work

‘Large amount of time In a tree Is spent waiting for

other
POSSI

‘Ccom

processors for non-leaves, and it may be
nle to merge some non-leave nodes

nining topologies may yield better throughput

results In some cases

‘Parallelism at the point or field level is also possible
using a fixed number of processors

‘Multiple multiplications on the same point can use
globally precomputed values for better performance

- Key generation



Future & Related Work

‘Better results can likely be achieved if suspected
frequent cache misses due to dual-processor
compute nodes are accounted for

-One method to account for this is to use 2 MPI
nodes per server (1 per processor), with 8 threads
used per MPI node so MPI takes care of it

‘Not merging MPI calls may be better suited for
hypercubes and trees in the hybrid approach
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