

Parallel Parallel ScalarScalar Multiplication Multiplication
of Elliptic Curve Pointsof Elliptic Curve Points

CSE 633
George Gunner
March 28, 2017

Professor: Dr. Russ Miller

MotivationMotivation

•Elliptic curves are commonly used in public-key
cryptography

►Digital Signatures

►Symmetric Key Exchange
•Scalar multiplication of points on a curve is the
most costly operation performed

Background – Finite FieldsBackground – Finite Fields

•A finite field on pn is the set of integers in {0, pn},
where p is a prime and n is some positive integer
•Two types of finite fields are of interest

►Prime fields, where n=1

►Uses regular arithmetic, modulo a prime p

►Binary fields, where p=2

►Uses polynomial arithmetic, modulo an
irreducible polynomial p

Background – Polynomial Background – Polynomial
Arithmetic on a Finite FieldArithmetic on a Finite Field

•The binary number b
n-1

||b
n-2

||...||b
0
 represents the

polynomial
•Arithmetic operations defined in terms of
polynomials, with coefficients computed modulo 2
•Squaring is efficiently achieved on binary fields

►Inserting a 0 between consecutive bits of a
number yields its square

►O(n) time compared to O(n2) time for
multiplication

∑i=0

n−1
bi x

i

Background – Non-Background – Non-
Adjacent FormsAdjacent Forms

•A non-adjacent form (NAF) is an alternate
representation for an integer k such that
where k

i
{0, ±1} and no two consecutive digits are ∈

nonzero
•A windowed NAF (wNAF) for k is the
representation such that |k

i
| < 2w-1 for a

window size w, k
i
 is 0 or odd, and for any w

consecutive digits, at most one is nonzero

k=∑i=0

l−1
k i2

i

k=∑i=0

l−1
k i2

i

Elliptic CurvesElliptic Curves

•General elliptic curve equation

•Two general types of curves are of interest:

►Prime curves:

►Binary curves:

►Binary curve with certain properties called
Koblitz curves allows field squaring to
replace less efficient point doubling in scalar
multiplication, which will be particularly
suitable for a parallel implementation

y2+axy+by=x3+cx2+dx+e

y2=x3+ax+b
y2+xy=x3+ax2+b

Elliptic Curve CoordinatesElliptic Curve Coordinates

•Natural to think of curves and points in terms of
affine coordinates (x, y) for geometric intuition
and to describe algebraic properties
•Computation often more efficient when projecting
on a higher dimensional space

►ie. Projective coordinates (x, y, z) from the
affine coordinates (x/z, y/z)

•Compressed coordinates can be used to
transmit points with minimal size

►The x affine coordinate and a bit signifying the
corresponding y value to use

Prime CurvesPrime Curves

•For a prime curve, if we have nonzero
determinant we can define
addition of points and form an abelian group:

►Closure

►Associativity

►Commutativity

►Identity Element (O, “point at infinity”)

►Inverse Element (-P for a point P)
•Two basic point operations: point addition and
point doubling

4 a3+27b2≠0(mod p)

Prime Curves – Geometric Prime Curves – Geometric
IntuitionIntuition

Prime Curves – Scalar Prime Curves – Scalar
MultiplicationMultiplication

•Basic approach is the “double-and-add” method
to compute kP given k=b

n-1
||b

n-2
||...||b

0
the binary

representation of k

Input: P, k=b
n-1

||b
n-2

||...||b
0

Output: Q = kP
Q=0
For i from 0 to n-1

Q=2Q
If b

i
=1 then Q=Q+P

Return Q

Prime Curves – Scalar Prime Curves – Scalar
MultiplicationMultiplication

•More efficient by a constant factor to use a wNAF
method:

Input: P, k
Output: Q =kP

Compute wNAF of
Precompute jP for j={1, 3, ..., 2w-1-1}
Q=O
For i from l-1 to 0

Q=2Q
if k

i
>0 then Q = Q+k

i
P

else if k
i
≠0 then Q=Q-k

i
P

Return Q

k=∑i=0

l−1
k i2

i

Binary CurvesBinary Curves

•Binary curves require b≠0 to define an abelian
group
•General binary curves use same algorithms as
prime curves to compute scalar multiplication
•Koblitz curves have a property which allows more
efficient computation of scalar multiplication

►Given a point (x, y) on the curve, (x2, y2) is
also on the curve, and this can be used to
replace point doubling by field squaring

Koblitz Curves – Koblitz Curves – ττ Operator Operator

•Define the τ operator such that τ(x, y)=(x2, y2)
and τO=O

►Recall that squaring on a finite field over 2m
can be computed efficiently

•Given a point P, we have (τ2+2)P=μτP where μ=(-
1)1-a where τj is the τ operator applied j times
•From the above result, we can consider τ as the
complex number satisfying τ2+2=μτ

►

►Allows a scalar to be expressed in terms of τ

τ=(μ+√−7)/2

Koblitz Curves – wKoblitz Curves – wτNAFτNAF

•A number κ=r
0
+r

1
τ on the ring has a wτNAF

representation where

►The α
i
=β

i
+γ

i
τ for each window size are chosen

so that each precomputed point requires at
most a single point addition and a single
application of τ during precomputation

ℤ[τ]
κ=∑i=0

l−1
ui τ

i

ui={ 0,α±1 ,α±3 , ...,α±(2w−1−1)}

Koblitz Curves – wKoblitz Curves – wτNAFτNAF

•Computing the wτNAF representation for a scalar
results in a representation that is too long in
general – ~2m digits for an m-bit scalar
•To get a suitable length representation, find a
complex number ρ' such that ρ'≡k (mod δ) where
δ=(τm – 1)/(τ – 1) using partial modulo reduction

►The equivalence ensures that ρ'P≡kP, where
ρ' has a sufficiently short representation
bounded in length by m+a+3

►High probability of finding ρ, the shortest
representation based on a chosen parameter C

Koblitz Curves – wKoblitz Curves – wτNAF τNAF
MultiplicationMultiplication

•The wτNAF method is as follows:

Input: P, ρ'=
Output: Q=ρ'P=kP

Precompute P
u
=α

u
P for u {±1, ±3, …, ±(2∈ w-1-1)}

Q=O
For I from l-1 to 0

Q=τQ
If u

i
≠0 then
Let u be such that α

u
=u

i
 or α

-u
=-u

i

If u
i
>0 then Q=Q+P

u

Else Q=Q-P
u

Return Q

∑i=0

l−1
ui τ

i

Securing Against Side Securing Against Side
Channel AttacksChannel Attacks

•The computation methods considered so far
depends on the input scalar
•Adversaries capable of side channel attacks, such
as a timing attack, can exploit this to learn secret
information
•Using a Montgomery method modifies
multiplication algorithms in a simple way to take
fixed time independent of the input scalar size

►Performance decreased by a constant factor

►Montgomery ladder used for prime curves

►Dummy variable used for Koblitz curves

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•Let k be an n-digit long scalar and suppose we
have 2m processors with 2m≤n

►In binary representation for prime curves

►In wτNAF representation for Koblitz curves
•We can break k into 2m parts:

•Then compute the smaller products in parallel

k=k2m
m∥k 2m−1

m ∥...∥k1
m

k2m
m P ,k2m−1

m P ,... , k 1
mP⇒Q2m

m ,Q2m−1
m , ...,Q1

m

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•From these smaller products, we can then
recursively recombine the Q values to obtain kP

►For prime curves, we recombine via doubling

►For Koblitz curves, we recombine via τ

►We have Q
1
0=kP

►In general denote the recombination function
as

Q j /2
i =2|k j−1

i+1 |Q j
i+1+Q j−1

i+1

Q j /2
i =τ|k j−1

i+1 |Q j
i+1+Q j−1

i+1

Q j /2
i =f (Q j

i+1 ,Q j−1
i+1)

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•The recombination steps can be represented as a
tree:

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•Putting this together, the algorithm for parallel
scalar multiplication is:

Input:
Output:

for i=1 to 2n, in parallel

For i=n-1 to 0
For j=i+1 to 1, in parallel

Return

P ,k=d2n
n∥d2n−1

n ∥...∥d1
n

Q=kP
Q=O

Qi
n=dn

j P

Q j /2
i =f (Q j

i+1,Q j−1
i+1)

Q0
1

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•Hypercube and tree topologies naturally suited

►Tree suitable for pipelining

►Hypercube could interweave multiple
multiplications together

•A linear structure can also be used, but has worse
running time than a hypercube or tree

►Better asymptotic throughput than a tree
•Higher throughput with no speedup can also be
achieved by a simple division of processors, with
results distributed across processors

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•Messages exchanged in a hypercube with 2
interweaved multiplications and 8 processors

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•Messages exchanged while pipelining
multiplications in a tree

Parallel Scalar Parallel Scalar
MultiplicationMultiplication

•Messages exchanged while pipelining
multiplications in a linear array

Asymptotic Running Time - Asymptotic Running Time -
SequentialSequential

•In terms of point additions (A), point doublings (D),
field size (m), and processors (p)

►The tau operator is asymptotically more
efficient than other point operations

•For a prime curve, m point doublings and on
average m/(1 + w) point additions are required for
a window size of w with 2w-2 precomputation work
•Asymptotic running time is thus:

►General: O(mD+mA)

►Koblitz: O(mA)

Asymptotic Running Time - Asymptotic Running Time -
Hypercube & TreeHypercube & Tree

•First round computes multiplication of size m/p
sequentially, requiring O(m/p D + m/p A) time
•The i-th (of log p total) recombination round
requires 2i m/p point doublings and one addition
•Theoretical optimal speedup using m/4 processors
•Asymptotic parallel running time is thus:

►General: O(mD + (m/p + log p)A) when 2n<m/4
 O(mD + (log m)A) when 2n≥m/4

►Koblitz: O((m/p + log p)A) when 2n<m/4
 O((log m)A) when 2n≥m/4

Asymptotic Running Time - Asymptotic Running Time -
LinearLinear

•Each processor computes in parallel a sequential
multiplication of size m/p, requiring O(m/p) time
•Recombination requires O(m/p) point doublings
per processor, except the last one, and a single
point addition
•Asymptotic parallel running time is thus:

►General: O(mD + (m/p + p)A)

►Koblitz: O((m/p + p)A)

Asymptotic ThroughputAsymptotic Throughput

•Throughput in a tree is determined by the
maximum of the root’s computation time and the
leaves’ computation time:

►General: O(1 / max(m/p (D + A), m D)

►Koblitz: O(1 / (m/p A))
•Throughput in a linear array is determined by the
computation time in a single node:

►General: O(1 / (m/p D + m/p A))

►Koblitz: O(1 / (m/p A))

Practical Running Time & Practical Running Time &
ThroughputThroughput

•Parallel overhead - O(log p) time for a tree or
hypercube and O(p) time for a linear array

►Network delays (MPI)

►Packing/unpacking overhead (MPI)

►Synchronization delays (OpenMP)
•Constant factors impact running time

►Window sizes vary based on subscalar size,
limiting speedup for regular multiplication

Practical Running Time & Practical Running Time &
ThroughputThroughput

•Sequential portion of multiplication – point
doubling or tau operator and scalar conversion

►Large sequential portion due to point doubling
cost for general curves limits speedup

►More efficient tau operator reduces sequential
portion, but sequential portion becomes more
significant with many processors

►Sequential portion more significant for regular
multiplication, further limiting speedup

Experimental ParametersExperimental Parameters

•10 standard NIST curves: P-192, P-224, P-256, P-
384, P-521, K-163, K-233, K-283, K-409, K-571
•Number of cores varied from 1-128
•Input form of scalar – NAF or binary
•Number of simultaneous multiplications varied
from 1-16 (hypercube)
•Multiplication type – Montgomery or regular
•Logical topologies – Hypercube, Tree, Linear
•OpenSSL used to handle basic point operations
•GMP/MPFR to handle large rationals/floats

Experimental SetupExperimental Setup

•16 core machines utilized for all tests at UB CCR:

►Intel E5-2660 Xeon (dual 8 core)

►Infiniband Network (when using >16 cores)
•MPI Thread Safety for Hybrid Approach

►Tree/hypercube: MPI_THREAD_SERIALIZED

►Linear: MPI_THREAD_MULTIPLE
•Points and scalars generated at random
•50,000 total multiplications performed for each
experiment

Experimental SetupExperimental Setup

•Linear and tree running time is not measured
directly, but estimated

►Tree running time estimated by estimated by
summing average running time at each tree
level excluding the time spent waiting for other
processors

►Linear running time estimated by summing the
the time spent in each node sequentially plus
the time spent in parallel

Sequential Running TimeSequential Running Time

•Koblitz curves (right) exhibit slower running times
due to less support in OpenSSL and binary curves
in general being better suited for hardware
implementations

Sequential Running TimeSequential Running Time

•Montgomery methods up to 3.5 slower than
regular multiplications (previous)
•Performance hit worse for Koblitz curves

Sequential Running TimeSequential Running Time

•Small improvement using NAF input
•Going forward, only binary input is presented

►Results for NAF input show slight improvement

Hypercube SpeedupHypercube Speedup

•Large parallel overhead limits speedup for prime
curves in particular

► Worse than sequential except P-256 using 2
cores

Hypercube SpeedupHypercube Speedup

•Interweaving worse than dividing processors

►Same holds for other configurations – further
graphs on simultaneous multiplications omitted

Hypercube OverheadHypercube Overhead

•Overhead grows with number of cores
•OpenSSL optimizations for P-224 at expense of
packing/unpacking time explain its results

Hypercube OverheadHypercube Overhead

•More time spent on packing/unpacking overhead
for Koblitz curves
•Generally less networking delays for Koblitz curves

Hypercube SpeedupHypercube Speedup

•Better speedup using a Montgomery method
•Prime curves show limited speedup due to larger
sequential portion

Tree SpeedupTree Speedup

•Better speedup than equivalent hypercube as
communications spread out over more time
•Overhead/constant factors outweigh parallel
benefits for prime curves with <15 processors

Tree SpeedupTree Speedup

•Better speedup using Montgomery method

Tree ThroughputTree Throughput

•Throughput continues to improve (except P-224)
as number of cores increased
•Better throughput by using processors
sequentially, but worse speedup in some cases

Tree ThroughputTree Throughput

•Throughput continues to improve (except P-224)
as number of cores increased
•Better throughput by using processors
sequentially, but worse speedup in some cases

Time Spent Waiting or on Time Spent Waiting or on
Parallel Overhead in TreeParallel Overhead in Tree

•Large amount of idle time, waiting for other
processors at non-leave levels
•Similar results for other configurations

Linear SpeedupLinear Speedup

•Strictly worse than sequential for prime curves
•For Koblitz curves, 2 cores give speedup comparable
to 2 core hypercube or 3 core tree and worse
otherwise

Linear SpeedupLinear Speedup

•Montgomery method shows marginal speedup for
prime curves, worse than hypercube or tree
•Better speedup for some Koblitz curves for 2-4 cores
compared to 2-4 core hypercube or 3-7 core tree

Linear ThroughputLinear Throughput

•Throughput is generally a bit better than a tree

►Strictly better to distribute multiplications
sequentially on prime curves using since no
speedup advantages and worse throughput

Linear ThroughputLinear Throughput

•Slightly better throughput than a tree when using few
cores

Linear OverheadLinear Overhead

•Generally linear overhead takes up less overall time
•Similar results for other configurations

MPI ConclusionsMPI Conclusions

•Packing/unpacking time for some curves and
network delays limit achievable speedup and
throughput
•Simultaneous communication can cause congestion
limiting speedup, as seen with a tree achieving
better speedup than an equivalent hypercube
•Trees generally offer good balance between
speedup and throughput
•Linear array never good for prime curves, and
better than a tree for Koblitz curves with a small
number of cores available

Challenges Moving to a Challenges Moving to a
Hybrid ApproachHybrid Approach

•Explicit synchronization required in OpenMP
•Results from MPI indicate limiting MPI calls could
be beneficial

►Where possible, MPI calls are merged, but this
requires additional synchronization

•Where to use OpenMP vs MPI?

►Based on rounds in hypercube topology

►Based on level in tree topology

►Based on neighbors in linear topology

Hybrid Hypercube with 2 Hybrid Hypercube with 2
MPI nodes and 4 threadsMPI nodes and 4 threads

Hybrid Tree with 4 MPI Hybrid Tree with 4 MPI
nodes and 4 threadsnodes and 4 threads

Hybrid Linear with 2 MPI Hybrid Linear with 2 MPI
nodes and 2 threadsnodes and 2 threads

Hypercube SpeedupHypercube Speedup

•Better speedup than MPI until 16 cores for prime
curves and 8-16 cores for Koblitz curves

►Performance impact for >8 cores may be due to
frequent cache misses between processors

Hypercube OverheadHypercube Overhead

•OpenMP has less overhead compared to MPI
•Network delays with hybrid approach (>16 cores)
quickly become significant

Hypercube OverheadHypercube Overhead

•Montgomery method shows less networking
overhead, and more time spent on other overhead

Hypercube SpeedupHypercube Speedup

•Montgomery methods offer better speedup up to
8-16 cores with an initial performance hit at 2
cores compared to MPI

Tree SpeedupTree Speedup

•Tree performs worse than in MPI

►Synchronization costs for a tree greater than
speedup attainable from the parallel algorithm

Tree SpeedupTree Speedup

•Tree performs worse than in MPI

►Synchronization costs for a tree greater than
speedup attainable from the parallel algorithm

Tree ThroughputTree Throughput

•Throughput for some curves comparable to
throughput in MPI up to 15 cores

►Synchronization delays with >15 cores limits
throughput

Tree ThroughputTree Throughput

•Throughput for some Koblitz curves comparable
to throughput in MPI up to 15 cores

►Synchronization delays with >15 cores limits
throughput

Time Spent Waiting or on Time Spent Waiting or on
Parallel Overhead in TreeParallel Overhead in Tree

•Significant overhead costs and idle time (Koblitz
curves)

►Additional costs incurred from setting locks
used for synchronization

Linear SpeedupLinear Speedup

•Better speedup than in MPI with <16 cores for prime
curves and 8 cores for Koblitz curves

►For prime curves, parallel overhead overwhelms
algorithm’s speedup when using 2-4 cores

Linear SpeedupLinear Speedup

•Surprisingly better speedup than a hypercube

►Less synchronization costs

►Performance hit at >8 cores

Linear ThroughputLinear Throughput

•Generally better throughput than when using MPI
with linear array

►Performance hit when hybrid approach is used
and when two processors per compute node used

Linear ThroughputLinear Throughput

•Better throughput when using <8-16 cores than in
MPI

►Performance hit when hybrid approach is used
and when two processors per compute node used

Linear OverheadLinear Overhead

•Large overhead when utilizing multiple MPI nodes for
prime curves corresponding to network delays
•Koblitz have nearly constant overhead for all cores
with spikes near MPI node boundaries

Hybrid ConclusionsHybrid Conclusions

•Synchronization delays can be worse than
networking delays in MPI in some cases
•Observed performance moving to 16 cores
significantly impacted the hybrid approach

►Frequent cache misses using multiple
processors may be the cause for these results

•Linear array showed better speedup than other
structures, but worse throughput than in MPI

►Less overhead compared to other structures
•Merging MPI calls may not have been beneficial

Overall ConclusionsOverall Conclusions

•Best logical structure depends on number of cores
available, desired throughput, desired speedup, and
curve type

►Koblitz curves better suited for parallelization

►Splitting cores sequentially best for maximizing
throughput

►MPI tree gives generally good balance between
speedup and throughput, for many cores

►OpenMP linear array gives generally good
balance between speedup and throughput for few
cores

Future & Related WorkFuture & Related Work

•Large amount of time in a tree is spent waiting for
other processors for non-leaves, and it may be
possible to merge some non-leave nodes
•Combining topologies may yield better throughput
results in some cases
•Parallelism at the point or field level is also possible
using a fixed number of processors
•Multiple multiplications on the same point can use
globally precomputed values for better performance

►Key generation

Future & Related WorkFuture & Related Work

•Better results can likely be achieved if suspected
frequent cache misses due to dual-processor
compute nodes are accounted for

►One method to account for this is to use 2 MPI
nodes per server (1 per processor), with 8 threads
used per MPI node so MPI takes care of it

•Not merging MPI calls may be better suited for
hypercubes and trees in the hybrid approach

ReferencesReferences

•Keke Wu, Huiyun Li, Dingju Zhu: Fast and scalable
parallel processing of scalar multiplication in elliptic curve
cryptosystems. Security and Communication Networks
5(6): 648-657 (2012)

•Hankerson, Darrel R., Scott A. Vanstone, and A. J.
Menezes. Guide to elliptic curve cryptography. New York:
Springer, 2003. Print.

•Jerome A. Solinas: Efficient Arithmetic on Koblitz Curves.
Des. Codes Cryptography 19(2/3): 195-249 (2000)

•Recommended Elliptic Curves For Federal Government
Use. NIST Computer Security Resource Center. 1999.

