
‘-

1

Jeremy Dominijanni

CSE633, Dr. Russ Miller

PARALLEL ID3



‘-

2

ID3 and the Sequential Case



‘-

3

• Decision tree classifier

• Works on k-ary categorical data

• Goal of ID3 is to maximize information gain at each split 

Same as minimizing the difference in entropy before and after 
splitting on a feature

• Produces a tree which represents each class as a disjunction of 

conjunctions (of features)

• Can think of it as producing multiple DNF expressions, one for each 

class

ID3



‘-

4

• Given 𝐷 dimensional data with each dimension taking 𝑘 categories

• Number of nodes 𝑁 =
𝑘𝐷+1−1

𝑘−1

• Number of observations 𝑀 = 𝑘𝐷

• Since 𝑀 and 𝑁 are both of the same order, we can say performance is

• 𝑂 𝑁𝑀 = 𝑂 𝑁2

Sequential Performance Analysis (Worst-Case)



‘-

5

Parallelizing ID3



‘-

6

• “Divide and conquer” is the obvious approach, but it has a major flaw

• If the data is unbalanced, then a large amount of CPU time is wasted

• Solution: add a master processor and send out individual tasks to free 

processors whenever it is possible to do so

• Overhead is larger than divide and conquer with one processor forced to 

delegate, but tree imbalance no longer affects speedup

• Implemented using Intel MPI and C++ 11

Parallelization of ID3



‘-

7

3 4 5 6

1 2

0

Divide & Conquer Approach (Four Steps)

3 4 5 6

1 2

0

Master & Workers Approach (Three Steps)



‘-

8

Master:

compute the topology of the perfect binary tree (maximum size scenario)

for-each un-computed node, if there are no unresolved dependencies and there is a free worker, 

send feature restrictions to worker, else break

wait for response from worker, on response, add new information to model, remove node from 

working list, and if it’s a leaf, remove descendants from un-computed list

goto for-each until completion

Worker:

wait for feature vector from master

remove invalid observations from list of all observations

compute correct ID3 decision

send decision to master

Master-Worker ID3 Algorithm



‘-

9

• Pre-processing work done by master 𝑂 𝑁𝑙𝑜𝑔𝑘𝑁

• Time to send tasks to workers 𝑂 𝑙𝑜𝑔𝑃 ≈ 𝑂 1

• Time to process data from workers 𝑂 𝑙𝑜𝑔𝑘
2𝑁

• Reduce the set of observations 𝑂 𝐷𝑀 ≈ 𝑂 𝑁

• Maximum time to compute ID3 decision 𝑂 𝐷𝑀 ≈ 𝑂 𝑁

• Overall theoretical time complexity 𝑂 𝑁𝑙𝑜𝑔𝑘𝑁+
𝑁2

𝑃

Worst-Case Performance Analysis of Master-Worker ID3



‘-

10

• Tested on UB CCR systems with Intel Xeon E5645 processors

• Tested using 1, 2, 4, 8, and 11 workers plus one master

• 15 binary datasets with 22 through 216 observations

• Full datasets have each observation as its own class in order to force a 

perfect binary tree (worst-case scenario)

• Fractional datasets have the value of one feature determine the class (if 

1st feature is 0, then the class is 0, otherwise each value has a unique 

class)

• Times used exclude I/O and the initial time to transfer data to all 

processors, sequential overhead and all other MPI operations included

Synthetic Benchmarks



‘-

11

Benchmark Results



‘-

12

• Predicted performance of 𝑂 𝑁2

• Performance measured using two 

processors (one master and one worker)

• Fit curve using scipy.optimize.curve_fit

Sequential Performance



‘-

13

• Master-Worker architecture should have 

runtime proportional to number of nodes

• Performance curves show that at all 

measured times, runtime on the full-tree 

is twice that as on the half-tree

• On smaller test sets, effect is less 

pronounced due to the larger impact of 

sequential initialization

Parallel Performance
On Different Tree Constructions



‘-

14

• Optimal speedup would be equal to the 

number of worker processors

• 𝑂(1) overhead when sending a task to 

and 𝑂 𝑙𝑜𝑔𝑘
2𝑁 when receiving a result

• Inevitable queueing delays when multiple 

processors try to return simultaneously

Parallel Speedup



‘-

15

• Even in cases where there are more 

tasks than processes, overhead can 

mean that fewer processors yield higher 

performance

Overhead Overtaking



‘-

16

Conclusions



‘-

17

• Sequential performance was as predicted

• Parallel speedup takes a large hit due to overhead, in part from having a 

single coordinator and frequent communication needs

• Improvement over simple divide and conquer in unbalanced datasets is 

linear to the reduction in nodes as expected

Expectations Met and Unmet



‘-

18

• Reduce the 𝑂 𝑙𝑜𝑔𝑘
2𝑁 receiving overhead if at all possible

• Cluster individual processor tasks into multiple nodes instead of single 

nodes to reduce communication overhead, and reduce duplicate 

processing

• Dynamically create tree topology to reduce 𝑂 𝑁𝑙𝑜𝑔𝑘𝑁 initialization 

overhead in master processor

Future Improvements


