PARALLEL ID3

Jeremy Dominijanni
CSE633, Dr. Russ Miller

University at Buffalo

YR | School of Engineering and Applied Sciences

University at Buffalo

Y8 | School of Engineering and Applied Sciences

ID3 and the Sequential Case

University at Buffalo

School of Engineering and Applied Sciences

s i3

ID3

* Decision tree classifier
* Works on k-ary categorical data

* Goal of ID3 is to maximize information gain at each split
Same as minimizing the difference in entropy before and after
splitting on a feature

* Produces a tree which represents each class as a disjunction of
conjunctions (of features)

* Can think of it as producing multiple DNF expressions, one for each
class

University at Buffalo
School of Engineering and Applied Sciences

s i3

Sequential Performance Analysis (Worst-Case)

* Given D dimensional data with each dimension taking k categories
D+1_1

Number of nodes N = ——

Number of observations M = kP

Since M and N are both of the same order, we can say performance is
O(NM) = O(N?)

University at Buffalo

Y8 | School of Engineering and Applied Sciences

Parallelizing ID3

University at Buffalo
School of Engineering and Applied Sciences

s i3

Parallelization of ID3

* “Divide and conquer” is the obvious approach, but it has a major flaw
* |Ifthe data is unbalanced, then a large amount of CPU time is wasted

* Solution: add a master processor and send out individual tasks to free
processors whenever it is possible to do so

* Overhead is larger than divide and conquer with one processor forced to
delegate, but tree imbalance no longer affects speedup

* Implemented using Intel MPIl and C++ 11

University at Buffalo

School of Engineering and Applied Sciences

G5

Divide & Conquer Approach (Four Steps) Master & Workers Approach (Three Steps)

s i3

University at Buffalo
School of Engineering and Applied Sciences

Master-Worker 1D3 Algorithm

Master:

Worker:

compute the topology of the perfect binary tree (maximum size scenario)

for-each un-computed node, if there are no unresolved dependencies and there is a free worker,
send feature restrictions to worker, else break

wait for response from worker, on response, add new information to model, remove node from
working list, and if it's a leaf, remove descendants from un-computed list

goto for-each until completion

wait for feature vector from master

remove invalid observations from list of all observations Q
compute correct ID3 decision
send decision to master 8 &

University at Buffalo
School of Engineering and Applied Sciences

s i3

Worst-Case Performance Analysis of Master-Worker ID3

* Pre-processing work done by master O(NlogyN)
* Time to send tasks to workers O(logP) =~ 0(1)
e Time to process data from workers 0(logiN)
* Reduce the set of observations O(DM) =~ O(N)
 Maximum time to compute ID3 decision O(DM) =~ O(N)

2
* Overall theoretical time complexity 0 (N log, N + N?)

s i3

University at Buffalo
School of Engineering and Applied Sciences

Synthetic Benchmarks

Tested on UB CCR systems with Intel Xeon E5645 processors
Tested using 1, 2, 4, 8, and 11 workers plus one master
15 binary datasets with 22 through 21¢ observations

Full datasets have each observation as its own class in order to force a
perfect binary tree (worst-case scenario)

Fractional datasets have the value of one feature determine the class (if
15t feature is O, then the class is 0, otherwise each value has a unique
class)

Times used exclude I/O and the initial time to transfer data to all
processors, sequential overhead and all other MPI operations included

University at Buffalo

Y8 | School of Engineering and Applied Sciences

Benchmark Results

University at Buffalo
School of Engineering and Applied Sciences

s i)

O
3500 Sequential Perfect Binary Tree Performance
. ® Measured Points
Sequential Performance oo | — ouedratic i
* Predicted performance of O(N?) -
2 2500 A
* Performance measured using two i
processors (one master and one worker) g 20007
£
* Fit curve using scipy.optimize.curve_fit S 1500 -
2
§ 1000
500 A
0 T T I T T T
0 20000 40000 60000 80000 100000 120000
Number of Nodes (N =2P*1—1)
q\
12« 3 4

University at Buffalo
School of Engineering and Applied Sciences

s i)

21 Observations Performance

Parallel Performance 3500 ————
On Different Tree Constructions —— Runtime on Half Tree

3000 +
e Master-Worker architecture should have

runtime proportional to number of nodes ~ § ***’

 Performance curves show that at all 2000 1

measured times, runtime on the full-tree
IS twice that as on the half-tree

1500 A

Computation Time (seconds)

. 1000 ~
e On smaller test sets, effect is less

pronounced due to the larger impact of 500

sequential initialization

2 4 6 8 10
Number of Worker Processors

University at Buffalo
School of Engineering and Applied Sciences

s i)

Parallel Speedup

* Optimal speedup would be equal to the
number of worker processors

* 0(1) overhead when sending a task to
and 0(logZN) when receiving a result

* Inevitable queueing delays when multiple
processors try to return simultaneously

Speedup

10 -

Speedup on 2% Observations

- QOptimal Speedup
- Program Speedup
® Measured Speedup

2 4 6 8
Number of Worker Processors

University at Buffalo
School of Engineering and Applied Sciences

s i)

Perfect Binary Tree Performance

I 1.4 - —— Program Time on 25
Overhead Ove rta.kl ng ~— Program Time on 23
* Even in cases where there are more g
tasks than processes, overhead can § 104
mean that fewer processors yield higher &
o 0.8 -
performance £
_§ 0.6
S
0.2 1
0.0 T T T 1 T

2 4 6 8 10
Number of Worker Processors

University at Buffalo

Y8 | School of Engineering and Applied Sciences

Conclusions

University at Buffalo
School of Engineering and Applied Sciences

s i3

Expectations Met and Unmet

* Seguential performance was as predicted

* Parallel speedup takes a large hit due to overhead, in part from having a
single coordinator and frequent communication needs

* Improvement over simple divide and congquer in unbalanced datasets is
linear to the reduction in nodes as expected

University at Buffalo
School of Engineering and Applied Sciences

s i3

Future Improvements
* Reduce the 0(log?N) receiving overhead if at all possible

* Cluster individual processor tasks into multiple nodes instead of single
nodes to reduce communication overhead, and reduce duplicate
processing

* Dynamically create tree topology to reduce O(Nlog; N) initialization
overhead in master processor

