

DEFINITION

• Dijkstra's algorithm to find the shortest path between a and b. It picks the
unvisited vertex with the lowest distance, calculates the distance through it to
each unvisited neighbor, and updates the neighbor's distance if smaller. Mark
visited when done with neighbors.

SEQUENTIAL VERSION
• Dijkstra's algorithm to find the shortest path between a and b. It picks the

unvisited vertex with the lowest distance, calculates the distance through it to
each unvisited neighbor, and updates the neighbor's distance if smaller. Mark
visited when done with neighbors.

• Sequential running time of…

• Dijkstra's algorithm with list O(V 2)

• Dijkstra's algorithm with modified binary heap O((E + V) log V)

• Dijkstra's algorithm with Fibonacci heap O(E + V log V)

DRAWBACK

• Sequential running time of…

• Dijkstra's algorithm with list O(V 2)

• Dijkstra's algorithm with modified binary heap O((E + V) log V)

• Dijkstra's algorithm with Fibonacci heap O(E + V log V)

• If nodes are too many (scale is too large), it will become very inefficient.

A PARALLEL APPROACH

• Divide nodes into clusters

• Each cluster calculate local node closest to the starting node

• Identify global closest node using parallel prefix

• Broadcast to all cluster

• Perform list update for each cluster

• VOID DIJKSTRA(INT *LOCAL_MAT, INT *LOCAL_DIST, INT *LOCAL_PRED, INT N, INT LOCAL_N, INT MY_RANK, MPI_COMM COMM)

• // INITIAL LOCAL MINIMUM DISTANCE

• //SET NODE 0 WITH VISITED MARK

• // FIND A LOCAL NODE WHICH IS NOT VISITED WITH MINIMUM DISTANCE

• /*

• * SEND:

• * MIN_DIST_LOC[0]: THE MINIMUM DISTANCE TO A LOCAL NODE

• * MIN_DIST_LOC[1]: THE GLOBAL POSITION OF THE LOCAL NODE

• * RECEIVE:

• * MIN_DIST[0]: THE MINIMUM DISTANCE TO A NODE

• * MIN_DIST[1]: THE GLOBAL POSITION OF THE NODE

• */

• //COMBINES VALUES FROM ALL PROCESSES AND DISTRIBUTES THE RESULT BACK TO ALL PROCESSES

• MPI_ALLREDUCE(MIN_DIST_LOC, MIN_DIST, 1, MPI_2INT, MPI_MINLOC, COMM);

• //CALCULATE NEW MINIMUM DISTANCE

RUNNING TIME
• P = number of processor

• During each iteration, update value of O(V) nodes with P processor -> O(V/P)

• During each iteration, find global closest node -> O(log P)

• O(V) iteration to finish routing table

• Running time: O (V2/P + V log P)

• More efficient to handle large scale nodes.

SEQUENTIAL VS. PARALLEL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 500 1000 1500 2000 2500 3000 3500 4000 4500

parallel sequential

❓❓❓

number of nodes

time (sec)

SEQUENTIAL VS. PARALLEL (LARGER SCALE…)

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000

parallel sequential number of nodes

time (sec)

SEQUENTIAL VS. PARALLEL (LARGER SCALE…)

0

5

10

15

20

25

30

35

40

45

50

0 10000 20000 30000 40000 50000 60000

parallel sequential number of nodes

time (sec)

2 PROCESSORS VS. 4 PROCESSORS

0

0.5

1

1.5

2

2.5

0 5000 10000 15000 20000 25000

sec(2 cores) sec(4 cores)

❓❓❓

number of nodes

time (sec)

2 PROCESSORS VS. 4 PROCESSORS
(FIXED BY INCREASING WEIGHTS ON EDGES)

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000 20000 25000

sec(2 cores) sec(4 cores) number of nodes

time (sec)

NUMBER OF PROCESSORS (2, 4, 8, 16)

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000 20000 25000

sec(2 cores) sec(4 cores) sec(8 cores) sec(16 cores) number of nodes

time (sec)

SCENARIO OF 32 PROCESSORS…
(NOT PERFORM BETTER THAN 16 PROCESSORS)

0

0.5

1

1.5

2

2.5

3

3.5

0 5000 10000 15000 20000 25000

sec(2 cores) sec(4 cores) sec(8 cores) sec(16 cores) sec(32cores) number of nodes

time (sec)

PERFORM BEST WITH 16 PROCESSORS

0

1

2

3

4

5

6

7

8

9

10

0 5000 10000 15000 20000 25000 30000 35000

sec(2 cores) sec(4 cores) sec(8 cores) sec(16 cores) sec(32cores) number of nodes

time (sec)

SPEED-UP

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000

number of nodes

percentage of parallel faster than sequential

THINKING
• LIMITATION: IN DIJKSTRA’S ALGORITHM, ONLY THE INNER LOOP CAN BE

IMPLEMENTED WITH PARALLEL ALGORITHM.

• FINDING: WHEN NUMBER OF PROCESSORS IS INCREASING, THE
EFFICIENCY OF PARALLEL ALGORITHM DROPS, COST OF COMMUNICATION
INCREASES, SO THAT IT SLOWS DOWN THE WHOLE PROGRAM’S SPEED.

• FURTHER: MORE NODES… FORMULA TO CALCULATE BEST AMOUNT OF
PROCESSORS

THANKS

