
BY PAVAN G JOSHI

PARALLELIZED IMPLEMENTATION OF
LOGISTIC REGRESSION USING MPI

CSE 633 PARALLEL ALGORITHMS

What is machine learning?

� Machine learning is a type of artificial intelligence (AI) that
provides computers with the ability to learn without being explicitly
programmed.[1]

� Machine learning focuses on the development of computer
programs that can change when exposed to new data.[1]

� Easier to make machines learn real life examples rather than
explicitly write real life rules

Training
Data

Algorithm

hypothesisx y’

What is Logistic Regression?

� Regression involves estimating the relationship between variables/features
and dependent variable.

� Logistic Regression is a form of supervised learning algorithm where the
ground truths are fed to the algorithm along with the features. The algorithm
learns the relationship between the features and the ground truths and can
help predict the classes/categories of unseen data/features.

� Requires the use of optimization algorithms such as gradient descent to get
the best estimation of the relationship.

� Parallelization of Logistic Regression requires parallelization of optimization
algorithms

Logistic Regression

� We are basically trying to fit an equation y = g(xθ),
here g(.) is the activation function.

� Logistic Regression involves:
� Initializing weights θ randomly. Also we need to initialize a

learning parameter α and a regularization parameter ƛ.

� Gradient Descent - Compute the gradients and update the
weights according to the learning parameters. Repeat the
steps till convergence or till a preset number of epochs or
iterations

� Perform validation and predict the values.

Gradient descent

▶︎ Gradient descent is a first-order
iterative optimization algorithm.

▶︎ To find a local minimum of a
function using gradient descent, one
takes steps proportional to the
negative of the gradient (or of the
approximate gradient) of the
function at the current point.

Gradient Descent – Algorithm

� All θ should be updated simultaneously

� Total number of computations required in each iteration depends on

� m è Number of samples in the training dataset

� j è Number of features in each sample

� k è Number of categories/classes

For each j

k k

Why Parallelize?

� Data Explosion

� Google grew from processing 100TB a day in 2004 to 20PB a day in
2008.

� Facebook claims to store upwards of 300PB with an increase of about
600TB daily.

� Logistic Regression involves optimization which can involve large
computations.

What is MapReduce?

� MapReduce is a programming model and an associated implementation for
processing and generating big data sets with a parallel, distributed algorithm
on a cluster.

� It was created by Google, Inc. in 2004 to process large scale data that was
obtained from the world wide web.

� The core idea behind MapReduce is mapping your data set into a collection
of <key, value> pairs, and then reducing over all pairs with the same key.

MapReduce

� A MapReduce program is
composed of
a Map() procedure (method)
that performs filtering and
sorting (such as sorting students
by first name into queues, one
queue for each name) and
a Reduce() method that
performs a summary operation
(such as counting the number of
students in each queue,
yielding name frequencies).

Implementation Approach

� Parallelization is implemented by dividing the data
between the processors

� Each processor is responsible for a particular
subset of samples.

� The respective subset of data is distributed to each
processor.

� Each processor performs gradient descent on its
set of samples locally

� Each processor computes the gradients locally on its set of
samples.

� The gradients computed is then propagated to a master
node (PE1) which aggregates the gradients and updates the
weights.

� The master node (PE1) then broadcasts the updated weights
to all the PE’s in the system.

� The entire process is repeated until gradient convergence or
till the number of epochs set has been met.

Implementation Approach

Input

Output

Input

Input

Input

Input

� MNIST Handwritten Dataset

� Contains a total of 70000
samples of images along with
labels

� Each image has a resolution of
28 x 28 = 784 pixels

Dataset

Results

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18

Ti
m

e

Cores

Fixed #Node, Varying #Cores

Results - Speed Up

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18

Sp
ee

d
U

p

Cores

Fixed #Node, Varying #Cores

Results

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140

Ti
m

e

Cores

Fixed #Cores Per Node,
Varying #Nodes

Results – Speed Up

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Sp
ee

d
U

p

Cores

Fixed #Cores Per Node,
Varying #Nodes

Conclusion

� We can see that when the nodes are doubled, the time required to
process/train the data decreases nearly by a factor of two. There is an
additional overhead involved because of message passing.

� As the data partitions become small, the message passing overhead
dominates the processing time.

References

[1] http://whatis.techtarget.com/definition/machine-learning

[2] Miller, Russ, and Laurence Boxer. Algorithms Sequential & Parallel: A
Unified Approach. 3rd ed., 2012.

[3] https://www.mathworks.com/products/distriben.html

[4] https://en.wikipedia.org/wiki/MapReduce

[5] Dean J, Ghemawat S. 2008. MapReduce: Simplified data processing on
large clusters. Commun ACM 51: 107–113.

THANK YOU

