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CRT - Applications

+ Cryptography (e.g. decryption in RSA)
+ Computing
+ Coding Theory

+ Various others = useful for its ability to simply the problem.




Chinese Remainder Theorem:
Definition

The theorem can also be generalized as follows. Given a set of simultaneous congruences
x = a; (mod m;)
fori = 1, ..., r and for which the m;, are pairwise relatively prime, the solution of the set of congruences is

M M
x=za by —+...4+a b, — (mod M),

m, m,

M=mm;---m,

and the b, are determined from

b, = | (mod m;).

m

(Courtesy of Mathworld)




Chinese Remainder Theorem:
Definition

The theorem can also be generalized 1. Detgrmme rellat|ve
prime of m/s.

x = a; (mod m;)

fori=1, ..., rand for 4. Calculate x/'s and @f the set of congruences is

M M
x=a by —+...4a, b, — (modM),
m m,

whe 2. Calculate M.

M=mm;---m,

and the b; are det 3. Calculate b/'s.
b M _ L (mod . ( 5. Verify X. >
m‘

(Courtesy of Mathworld)




Chinese Remainder Theorem:
Example

<+ Given this set of linear congruences:
> X=1modg
» X=2mod6
» X=3mod7

Determine X.
X =206 (mod 210)

M=5*6%*7
=210

M, = 210/5 = 42
M, =210/6 =35
M3 =210/7=30




Chinese Remainder Theorem:
Example

1. Determine relative
prime of m/'s.

<+ Given this set of linear congruences: 5. Verify X with all
> X=1modg
» X=2mod6

» X=3mod7y @ex sandthe

congruences.

Determine X.
X =206 (mod 210)
(2.Ca|cu|ate M.

M=g5*6*7
=210 3. Calculate bD
b,=3 126

M, = 210/5 = 42

M, =210/6 =35 b, =5 350

M, = 210/7 =30 b 360
836




Dependencies

- Determine Relative
Prime

- Calculate

M - Calculate

b/'s - Calculate

x;'s and X.

- Verify
solution.




Implementation — Problem space

+ Originally wanted to have a large number of congruences in
one problem = values became very large very quick.

+ Large number of problems instead.

» Sets of 5 congruences per problem. /
_ _ X of Problem o = 1523
» First 5o primes as m, values. X of Problem 1 = 352553

> Range from o-9 for a, values. X of Problem 2 = 6.69896e+07
X of Problem 3 = 5.56846e+08

X of Problem 4 = 7.65351e+08

X =a mod m, X of Problem 5 =1.31566e+09
X of Problem 6 = 6.72314€e+09
X of Problem 7 = 2.63586e+10
X of Problem 8 = 7.45597e+09
X of Problem g =3.51302e+11

s o

» Recall: Equation is of the form




Implementation Flow

. Sequential
. Explored multithreaded implementation. (Was curious)

. Parallel for one complex problem.

» Steps of determining relative prime, computing M, b/s, x.'s, and
X, and verifying solution were divided among processors.

. Parallel for large number of problems.




Parallel for One Complex Problem

Each node gets approximately (number of congruences)/
(number of nodes) to work with.

F(noc, non, rank), where noc = no. of congruences and non =
no. of nodes, at each of the steps to determine range of
responsibility.

Values were so large that solutions weren’t represented

proper|y_ Problemo: X=1mod2
_ X=2mod 3
» -nanisn’t very useful X =3mod 5
X=¢4mod7y
Wanted runtime in seconds. _ X=smodu
Solution: X = 1523 mod 2310
Took: 0.021911 (MPI Time)
0.01 (CTime)




Parallel for Large Problem Set

+ Each node gets approximately (number of problems)/
(number of nodes) to work with.

+ F(nop, non, rank) to determine range of responsibility.

+ All nodes have an allocated problem set and need only worry
about its domain of responsibility.

+ Forrun time observations, less of a need to optimize within
each problem.




Things to consider

+ According to Amdahl’s Law, minimum run time can not be
better than the non-parallelizable part.

+ Here, the non-parallelizable part has been set to be one
problem (a set of 5 congruences).

Amdahl’'s Law
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Running -> Only Root Node Needs All Solutions

MPI RT - p10

Run Time vs. Nodes (Root) 17.901

17.727
14.105
13.560
“*MPIRT - p10 13.524
13.531
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Running -> All Nodes Need All Solutions

MPI RT - p10

Run Time vs. Nodes (ALL) 18.037
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For better comparison —CTimes

CTime vs. Nodes

Eventually a tiny more,
but not by much.
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For better comparison — MPI Times

MPI Time vs. Nodes

Same here.
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| essons Learned

Running programs with MP1in C.

CRT is use to simplify more complicated problems so it has to
be inherently fast.

Since we are limited by the possible complexity (number of
congruences per problem), considering a larger set (number
of problems) for the problem space can do the trick .

MPI_Allreduce (Max) is great for finding longest run time.
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Questions ?




