Image Compression using

CSE 702 - Seminar
Instructor: Dr. Russ Miller
By: Aashna Mahajan - 50317416

tﬁ University at Buffalo The State University of New York



% University at Buffalo The state University of New York

Outline

* Problem statement

* Image Compression

« K-Means clustering algorithm
« Sequential Algorithm
 OpenMP

« Parallel Algorithm

* Results

« Observations

« References



% University at Buffalo The state University of New York

Problem statement
Using OpenMP for Parallel Implementation of Image Compression using K-Means

clustering.




% University at Buffalo The state University of New York

Image Compression

Image Compression is a type of data compression applied to digital
iImages, to reduce their cost for storage or transmission.

Applications

» Medical Imaging

» Face Recognition and Detection

 Satellite Remote Sensing

» Software and Security Industry

* Retail Stores

* Federal Government Agencies, etc. A



% University at Buffalo The state University of New York

K-Means Clustering Algorithm

« K-means clustering is the optimization technique to find the ‘k’

clusters or groups in the given set of data points.
« Initially, select ‘k’ data points to be the cluster centers. | l 1 2
« Assignment step - Assign each data point to the closest cluster ; ‘
centers. 3 g
» Update step - Calculate the new cluster centers by taking | ; . 3*

average of all the data points in each cluster.

* Repeat the assignment and updation steps for a particular
number of iterations.



% University at Buffalo The state University of New York

Sequential Algorithm

Read the image using Python OpenCV.

Select 'K’ number of clusters.

Randomly, select 'k’ pixels from the image to be the cluster centers.

Iterate through each pixel in the image and assign it to the closest cluster

center.

e Take average of all the pixels in each cluster, which will give us the new cluster
centers.

e Repeat the assignment and updation steps for a particular number of
iterations.

e Update the image with the new pixels.



% University at Buffalo The state University of New York

OpenMP

n threads
\\-—-
One thread One thread

Open Multi-Processing

Parallel programming model using
Shared memory

One thread that runs from beginning to
end - Master Thread

Additional threads fork from the master
thread and then join after the parallel
implementation - Slave Threads



% University at Buffalo The state University of New York

Parallel Algorithm

Convert Image to pixels with RGB values in a text file.

Consider P pixels distributed among N cores.

Each core is assigned P/N pixel values from the text file.

'k’ pixels are randomly selected as the cluster centers and assigned to
shared memory space.

Each core identifies the clusters all it's pixels belongs to.

The new global cluster centers are found by taking mean of all the local
sums.

Repeat the clustering for the specified number of iterations.

Store information about each point’s final cluster center in a text file using the
cluster centers of the final iteration.

Convert pixels in text file back to the Image with reduced colors.



% University at Buffalo The state University of New York

Results

Original Image Compressed Image - 5 Clusters Compressed Image - 10 Clusters




% University at Buffalo The state University of New York

Time Analysis

5 Clusters and 20 Iterations

Number of Time (s) 18
Cores 16
2 18.77 1
12
4 9.38 £ 10
=
8 4.78 8
6
16 2.47 .
32 1.29 2

L)

(S8 )
N

1 2 4 8 16

Number of threads



% University at Buffalo The state University of New York

Time Analysis

5 Clusters and 50 Iterations

50
Number of Time (s) a5
Cores ks
2 43.07 35
4 2158 50
£ 25
8 11.01 =, g
16 5.71 3
10
32 2.98 :
1 2 4 8 16 32

Number of threads



% University at Buffalo The state University of New York

Time Analysis

10 Clusters and 20 Iterations

Number of Time (s) K
Cores 35
2 33.87 0
25
4 16.95 -
£ 20
8 8.364 "
) 15
16 4.4 10
32 2.29 2
) 1 2 4 8 16 32

Number of threads



% University at Buffalo The state University of New York

Time Analysis

10 Clusters and 50 lterations

Number of Time (s) 80
Cores 70
2 76.34 60
4 38.17 g 0
F 40
8 19.58 o
oV
16 10.17 20
10
32 5.34
1 2 4 g 16 32

Number of threads



% University at Buffalo The state University of New York

Observations

e Significant speedup observed as the cores were increased upto 32.

* The performance gets lower with 64 or more cores due to implicit context-switching and

increased overheads.



% University at Buffalo The state University of New York

References

e Algorithms Sequential & Parallel: A Unified Approach (Dr. Russ Miller, Dr.Laurence Boxer)
* https://en.wikipedia.org/wiki/OpenMP
* https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-basics.html

* https://towardsdatascience.com/image-compression-using-k-means-clustering-aa0c91bb0eeb



https://towardsdatascience.com/image-compression-using-k-means-clustering-aa0c91bb0eeb

% University at Buffalo The state University of New York

Thank You



