Outline

• Problem statement
• Image Compression
• K-Means clustering algorithm
• Sequential Algorithm
• OpenMP
• Parallel Algorithm
• Results
• Observations
• References
Problem statement

Using OpenMP for Parallel Implementation of Image Compression using K-Means clustering.
Image Compression

Image Compression is a type of data compression applied to digital images, to reduce their cost for storage or transmission.

Applications

• Medical Imaging
• Face Recognition and Detection
• Satellite Remote Sensing
• Software and Security Industry
• Retail Stores
• Federal Government Agencies, etc.
K-Means Clustering Algorithm

• K-means clustering is the optimization technique to find the ‘k’ clusters or groups in the given set of data points.

• Initially, select ‘k’ data points to be the cluster centers.

• Assignment step - Assign each data point to the closest cluster centers.

• Update step - Calculate the new cluster centers by taking average of all the data points in each cluster.

• Repeat the assignment and updation steps for a particular number of iterations.
Sequential Algorithm

- Read the image using Python OpenCV.
- Select ‘k’ number of clusters.
- Randomly, select ‘k’ pixels from the image to be the cluster centers.
- Iterate through each pixel in the image and assign it to the closest cluster center.
- Take average of all the pixels in each cluster, which will give us the new cluster centers.
- Repeat the assignment and updation steps for a particular number of iterations.
- Update the image with the new pixels.
OpenMP

- Open Multi-Processing
- Parallel programming model using Shared memory
- One thread that runs from beginning to end - Master Thread
- Additional threads fork from the master thread and then join after the parallel implementation - Slave Threads
Parallel Algorithm

- Convert Image to pixels with RGB values in a text file.
- Consider P pixels distributed among N cores.
- Each core is assigned P/N pixel values from the text file.
- ‘k’ pixels are randomly selected as the cluster centers and assigned to shared memory space.
- Each core identifies the clusters all it’s pixels belongs to.
- The new global cluster centers are found by taking mean of all the local sums.
- Repeat the clustering for the specified number of iterations.
- Store information about each point’s final cluster center in a text file using the cluster centers of the final iteration.
- Convert pixels in text file back to the Image with reduced colors.
Results

Original Image

Compressed Image - 5 Clusters

Compressed Image - 10 Clusters
Time Analysis

<table>
<thead>
<tr>
<th>Number of Cores</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>18.77</td>
</tr>
<tr>
<td>4</td>
<td>9.38</td>
</tr>
<tr>
<td>8</td>
<td>4.78</td>
</tr>
<tr>
<td>16</td>
<td>2.47</td>
</tr>
<tr>
<td>32</td>
<td>1.29</td>
</tr>
</tbody>
</table>

5 Clusters and 20 Iterations
Time Analysis

<table>
<thead>
<tr>
<th>Number of Cores</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>43.07</td>
</tr>
<tr>
<td>4</td>
<td>21.58</td>
</tr>
<tr>
<td>8</td>
<td>11.01</td>
</tr>
<tr>
<td>16</td>
<td>5.71</td>
</tr>
<tr>
<td>32</td>
<td>2.98</td>
</tr>
</tbody>
</table>

5 Clusters and 50 Iterations
Time Analysis

<table>
<thead>
<tr>
<th>Number of Cores</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>33.87</td>
</tr>
<tr>
<td>4</td>
<td>16.95</td>
</tr>
<tr>
<td>8</td>
<td>8.364</td>
</tr>
<tr>
<td>16</td>
<td>4.4</td>
</tr>
<tr>
<td>32</td>
<td>2.29</td>
</tr>
</tbody>
</table>

10 Clusters and 20 Iterations
Time Analysis

<table>
<thead>
<tr>
<th>Number of Cores</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>76.34</td>
</tr>
<tr>
<td>4</td>
<td>38.17</td>
</tr>
<tr>
<td>8</td>
<td>19.58</td>
</tr>
<tr>
<td>16</td>
<td>10.17</td>
</tr>
<tr>
<td>32</td>
<td>5.34</td>
</tr>
</tbody>
</table>

10 Clusters and 50 Iterations
Observations

- Significant speedup observed as the cores were increased up to 32.
- The performance gets lower with 64 or more cores due to implicit context-switching and increased overheads.
References

• Algorithms Sequential & Parallel: A Unified Approach (Dr. Russ Miller, Dr.Laurence Boxer)
• https://en.wikipedia.org/wiki/OpenMP
• https://pages.tacc.utexas.edu/~eijkhout/pcse/html/omp-basics.html
• https://towardsdatascience.com/image-compression-using-k-means-clustering-aa0c91bb0eeb
Thank You