
PARALLEL
MATRIX
MULTIPLICATION

Presented by: Aditya Sabnis

5

Outline
• Problem Statement

• Applications

• Sequential Matrix Multiplication

• Parallel Matrix Multiplication

• Cannon’s Algorithm

• Numerical example

• Results

• Next Steps

3

PROBLEM STATEMENT

If matrix A = [aij] is an m×n matrix and B = [bij] is an n×p matrix
then the matrix multiplication A×B is an m×p matrix.

AB = [cij], where cij = ai1b1j + ai2b2j + … + ainbnj

(The entry in the ith row and jth column is denoted by the double
subscript notation aij, bij, and cij.)

3

PROBLEM STATEMENT (contd.)

Number of Columns in A match the number of Rows of B.

Depiction of matrix multiplication, taken from Wikipedia

https://en.wikipedia.org/wiki/Matrix_multiplication

3

Applications

• Used in image filtering using 2D convolution

• Used in Machine learning algorithms

• Used for quantum mechanics

3

Sequential Matrix Multiplication

for (i=0; i< n; i++){

for (j=0; j< n; j++){

c[i][j] = 0

for (k=0; k< n; k++){

c[i][j] = c[i][j] + a[i][k]*b[k][j]

}

}

} NOTE: The total
number of steps are
n*n*(2n-1). So the
complexity of the
problem is O(n3)

3

Parallel Matrix Multiplication

• Parallel matrix multiplication is usually based on the sequential
matrix multiplication algorithm.

• The computation in each iteration of the two outer loops is not
dependent upon any other iteration.

• Each instance of the inner loop could be executed in parallel

• Complexity of O(n2) is obtainable with n processors

• Complexity of O(n) is obtainable with n2 processors

• Complexity of O(log n) is obtainable with n3 processors

B [] [j]

A [i] []

C [i] [j]

Column j

Row i

3

Parallel - Cannon’s Algorithm

Step 1: Divide the matrix A and B into P square blocks, where P is
the number of Processors.

Step 2: Create grid of processors of size P1/2 * P1/2 So that each
process had block of A and block of B

Step 3: Each process has a sub block C to which we add the
results after Multiplying the sub-blocks in the processor.

Step 4: The sub-blocks of A are shifted one step to the left and the
sub-blocks of B are shifted one step up.

Step 5: We repeat the steps 3 and 4 for square root of P times.

Numerical Example

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

5 6 4

9 7 8

1 5 9

4 8 3

7 2 6

Move 1 left

Move 2 upMove 1 up

Move 2 left

Matrix A

Matrix B

Matrix A

1 10 27

20 48 12

63 14 48

Matrix C

X (Aij * Bij)

Numerical Example (Contd.)

4 8 3

7 2 6

1 5 9

Move 1 left

Move 1 up

Matrix A

Matrix B

Matrix A
1 10 27
20 48 12
63 14 48

Matrix C

X (Aij * Bij)

2 3 1

6 4 5

7 8 9

1 2 3

5 6 4

9 7 8

1 5 9

4 8 3

7 2 6

+

9 34 30

62 56 42

70 54 129

=

Numerical Example (Contd.)

4 8 3

7 2 6

1 5 9

Move 1 left

Move 1 up

Matrix A

Matrix B

Matrix A
9 34 30
62 56 42
70 54 129

Matrix C

X (Aij * Bij)

2 3 1

6 4 5

7 8 9

3 1 2

4 5 6

8 9 7

7 2 6

1 5 9

4 8 3

+

30 36 42

66 81 96

102 126 150

=

Results

0

0.001

0.003

0.004

0.005

9 25 49 64

Matrix Size No of
processors Time (secs)

3*3 9 0.000204

5*5 25 0.000791

7*7 49 0.002239

8*8 64 0.004439

Parallel Processing
9 16 25 64

90x90 0.001354 0.001467 0.001426 0.003325

300x300 0.039349 0.022482 0.016006 0.008147

900x900 0.564426 0.415001 0.207663 0.104493

3000x3000 21.176418 12.546824 7.677214 3.003271

6000x6000 156.690799 92.761089 83.312945 27.089127

0

40

80

120

160

90x90 900x900 6000x6000
9 16 25 64

0

0.15

0.3

0.45

0.6

90x90 300x300 900x900
9 16 25 64

Increasing the number of processors

8x8 32x32 128x128 1000x1000

4 0.000061 0.000270 0.006036 1.924891

16 0.000134 0.000760 0.002450 0.830853

25 0.000621 0.003518 0.002789 0.190719

64 0.003515 0.005610 0.003559 0.057688
0

0.002

0.004

0.005

0.007

4 16 25 64

8x8 32x32 128x128

3

Learnings
• Understanding MPI and Parallel processing.

• Cannon’s Matrix Multiplication Algorithm

• Parallel processing and its effect on runtime.

• Understanding that just increasing the nodes won’t
always reduce the runtime.

Next Steps
• Run single block matrix multiplication in parallel.

• Implementation using OpenMP.

THANK YOU

