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• To experience the power of parallel computing using MPI by 

implementing a parallel prefix operation.

Objective

Problem Statement

• Application of parallel prefix: Identifying the maximum sum that can be computed using 

contiguous elements in an array.

• Eg, Consider the Array = {-2 , 1 , -3 , 4 , -1 , 2 , 1 , -5 , 4}

• Maximum sum = 6
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• Step 1: Perform a parallel prefix sum operation.

Eg: 

Array = {-2 , 1 , -3 , 4 , -1 , 2 , 1 , -5 , 4} =>  {-2 , -1 , -4 , 0 , -1 , 1 , 2 , -3 , 1}

• Step 2: Perform a parallel postfix max operation on the resultant array

Max Array = {-2 , -1 , -4 , 0 , -1 , 1 , 2 , -3 , 1} => {2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1}

Parallel Prefix Algorithm

Parallel Prefix Sum

Parallel Postfix Max
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• Step 3: Compute the following formula in parallel for every element, 

Max_Array[i] – Sum[i] + Array[i]:

{2 , 4 , 3 , 6 , 2 , 3 , 1 , -1 , 4}

• The maximum element in this array will be broadcasted to every processor.

Parallel Prefix Algorithm
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• Let the problem size be “n”.

• Let the number of processors we have be “p”.

• What if n >> p (very much greater)?

✓ We can divide the problem so that each processor get a chunk of data of size n/p.

✓ Consider,

Array = {-2 , 1 , -3 , 4 , -1 , 2 , 1 , -5 , 4, . . . . .} size = n.

✓ Every processor will be responsible for a single chunk and will perform the parallel 

prefix/postfix operation in sequential manner within the n/p chunk of data.

Parallel Prefix Algorithm

Size n/p Size n/p …… Size n/p
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➢ {-2, 1, -3 }  {4, -1, 2}  {1, -5, 4}

➢ {-2, -1, -4 }  {4, 3, 5}  {1, -4, 0}

➢ {-2, -1, -4 }  {4, 3, 1}  {1, -4, 1}

➢ {-2, -1, -4 }  {0, -1, 1}  {2, -3, 1} => Solution.

Parallel Prefix Sum Simulation
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Slurm Script
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• Problem Size – 64,000,000 (64 Million)

• Sequential running time (in milliseconds) : 2780.9118 ms

Analysis – Constant ‘n’ & Variable Node ‘p’

Number of Processors Run Time (in milliseconds)

4 1108.829 ms

8 629.524 ms

16 301.566 ms

32 186.051 ms

64 83.160 ms

128 48.400 ms

256 27.883 ms
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Analysis – Constant ‘n’ & Variable Node ‘p’
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Analysis - Different Problem Size
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Analysis – Increasing Running Time
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• Using more processors decreases the run time of an algorithm (Not in all cases!).

• For smaller problem size, (n = 64,000), lower number of processors lead to better performance. 

Why? – Because the time taken to communicate between the nodes is more than the time taken 
to run the actual algorithm.

• This invalidates the assumption that “Throw in more processors for better performance”.

For any problem of size ‘n’, after a certain number of processors ‘p’, the run time of the algorithm begins to 
increase due to the overhead of communication between the processors as stated above.

Observation
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THANK YOU


