
‘-

1

Using MPI
Instructor: Dr. Russ Miller

By,

Aditya Subramanian Muralidaran

PARALLEL COMPUTING

OF MAXIMUM SUM SUB-

ARRAY

‘-

2

• Objective

• Problem Statement

• Algorithm

• Slurm Script

• Analysis

• Observation

Contents

‘-

3

• To experience the power of parallel computing using MPI by

implementing a parallel prefix operation.

Objective

Problem Statement

• Application of parallel prefix: Identifying the maximum sum that can be computed using

contiguous elements in an array.

• Eg, Consider the Array = {-2 , 1 , -3 , 4 , -1 , 2 , 1 , -5 , 4}

• Maximum sum = 6

‘-

4

• Step 1: Perform a parallel prefix sum operation.

Eg:

Array = {-2 , 1 , -3 , 4 , -1 , 2 , 1 , -5 , 4} => {-2 , -1 , -4 , 0 , -1 , 1 , 2 , -3 , 1}

• Step 2: Perform a parallel postfix max operation on the resultant array

Max Array = {-2 , -1 , -4 , 0 , -1 , 1 , 2 , -3 , 1} => {2 , 2 , 2 , 2 , 2 , 2 , 2 , 1 , 1}

Parallel Prefix Algorithm

Parallel Prefix Sum

Parallel Postfix Max

‘-

5

• Step 3: Compute the following formula in parallel for every element,

Max_Array[i] – Sum[i] + Array[i]:

{2 , 4 , 3 , 6 , 2 , 3 , 1 , -1 , 4}

• The maximum element in this array will be broadcasted to every processor.

Parallel Prefix Algorithm

‘-

6

• Let the problem size be “n”.

• Let the number of processors we have be “p”.

• What if n >> p (very much greater)?

✓ We can divide the problem so that each processor get a chunk of data of size n/p.

✓ Consider,

Array = {-2 , 1 , -3 , 4 , -1 , 2 , 1 , -5 , 4,} size = n.

✓ Every processor will be responsible for a single chunk and will perform the parallel

prefix/postfix operation in sequential manner within the n/p chunk of data.

Parallel Prefix Algorithm

Size n/p Size n/p …… Size n/p

‘-

7

➢ {-2, 1, -3 } {4, -1, 2} {1, -5, 4}

➢ {-2, -1, -4 } {4, 3, 5} {1, -4, 0}

➢ {-2, -1, -4 } {4, 3, 1} {1, -4, 1}

➢ {-2, -1, -4 } {0, -1, 1} {2, -3, 1} => Solution.

Parallel Prefix Sum Simulation

‘-

8

Slurm Script

‘-

9

• Problem Size – 64,000,000 (64 Million)

• Sequential running time (in milliseconds) : 2780.9118 ms

Analysis – Constant ‘n’ & Variable Node ‘p’

Number of Processors Run Time (in milliseconds)

4 1108.829 ms

8 629.524 ms

16 301.566 ms

32 186.051 ms

64 83.160 ms

128 48.400 ms

256 27.883 ms

‘-

10

Analysis – Constant ‘n’ & Variable Node ‘p’

4, 1108.829

8, 629.524

16, 301.566

32, 186.051

64, 83.16
128, 48.4 256, 27.883

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300

R
u

n
 T

im
e

 (
m

s
)

Number of Processors

RUN TIME (IN MILLISECONDS)
N = 64 MILLION

‘-

11

Analysis - Different Problem Size

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60 70

R
u

n
 T

im
e

 (
m

s
)

ANALYSIS DIFFERENT PROBLEM SIZE

n = 640,000 n = 64,000 n = 6,400,000

‘-

12

Analysis – Increasing Running Time

1, 3.6047

4, 2.6064
8, 2.9211

16, 3.4263

32, 8.1203

64, 6.0324

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70

R
u

n
 T

im
e

 (
m

s
)

Number of Processors

RUN TIME (IN MILLISECONDS)
N = 64,000

‘-

13

• Using more processors decreases the run time of an algorithm (Not in all cases!).

• For smaller problem size, (n = 64,000), lower number of processors lead to better performance.

Why? – Because the time taken to communicate between the nodes is more than the time taken
to run the actual algorithm.

• This invalidates the assumption that “Throw in more processors for better performance”.

For any problem of size ‘n’, after a certain number of processors ‘p’, the run time of the algorithm begins to
increase due to the overhead of communication between the processors as stated above.

Observation

‘-

14

THANK YOU

