PARALLEL COMPUTING
OF MAXIMUM SUM SUB-
ARRAY

Using MPI

Instructor: Dr. Russ Miller

By,
Aditya Subramanian Muralidaran

tﬁ University at Buffalo The state University of New York

tﬁ University at Buffalo The State University of New York

Contents
* Objective
* Problem Statement
e Algorithm
* Slurm Script
* Analysis

e Observation

tﬁ University at Buffalo The State University of New York

Objective

To experience the power of parallel computing using MPI by
iImplementing a parallel prefix operation.

Problem Statement

Application of parallel prefix: Identifying the maximum sum that can be computed using
contiguous elements in an array.

* Eg, Considerthe Array={-2,1,-3\,4,-1,2,1 /-5, 4}

e Maximumsum=06

tﬁ University at Buffalo The State University of New York

Parallel Prefix Algorithm

* Step 1: Perform a parallel prefix sum operation.
EQ:

Array:{-2,1,-3,4,-1,2,1,-5,4$:> {2,-1,-4,0,-1,1,2,-3,1}

Parallel Prefix Sum

* Step 2: Perform a parallel postfix max operation on the resultant array
Max Array ={-2,-1,4,0,-1,1,2,-3,1}=>{2,2,2,2,2,2,2,1,1}

Parallel Postfix Max

tﬁ University at Buffalo The State University of New York

Parallel Prefix Algorithm

* Step 3: Compute the following formula in parallel for every element,
Max_Array[i] — Sum[i] + Array]i]:
{2,4,3,6,2,3,1,-1,4}

* The maximum element in this array will be broadcasted to every processor.

tﬁ University at Buffalo The State University of New York

Parallel Prefix Algorithm

* Letthe problem size be “n”.
* Letthe number of processors we have be “p”.
 Whatif n >>p (very much greater)?
v" We can divide the problem so that each processor get a chunk of data of size n/p.

v" Consider,

Array={t2,1,-3,4,-1,2,1,-5,4,|....}size=n.

Size n/p Size n/p Size nlp

v’ Every processor will be responsible for a single chunk and will perform the parallel
prefix/postfix operation in sequential manner within the n/p chunk of data.

tﬁ University at Buffalo The State University of New York

Parallel Prefix Sum Simulation

> {-2,1,-3} {4,-1,2} {1,-5, 4

> {-2,-1,-4} {4,3,5} {1,-4, 0}

> {-2,-1,-4} {4,3,1} {1,-4,1}

> {-2,-1,-4} {0, -1, 1} {2, -3, 1} => Solution.

-(é University at Buffalo The state University of New York

Slurm Script

14 .0
—mpi/S4.1.3

obj]l max subarray.:
unlimited

Iﬁ University at Buffalo The state University of New York

Analysis — Constant 'n’ & Variable Node ‘p’
* Problem Size — 64,000,000 (64 Million)

* Sequential running time (in milliseconds) : 2780.9118 ms

Number of Processors | Run Time (in milliseconds)
4
8

1108.829 ms

629.524 ms
16 301.566 ms
32 186.051 ms
64 83.160 ms
128 48.400 ms

256 27.883 ms

Iﬁ University at Buffalo The state University of New York

Analysis — Constant ‘n’ & Variable Node ‘p’

RUN TIME (IN MILLISECONDS)
N = 64 MILLION

4,1108.829

0
E
(]
E
'_
c
=}
o

16, 301.566
32, 186.051

64, 83.16
128, 48.4 256, 27.883

150 250
Number of Processors

Iﬁ University at Buffalo The state University of New York

Analysis - Different Problem Size

ANALYSIS DIFFERENT PROBLEM SIZE

w
E
)
E
'_
c
S
@

20 40 50
=O-n = 640,000 n = 64,000 =0O-n = 6,400,000

Iﬁ University at Buffalo The state University of New York

Analysis — Increasing Running Time

RUN TIME (IN MILLISECONDS)
N = 64,000

(32, 8.1203]

64, 6.0324

()]

Run Time (ms)
S

B

4, 2.6064

N

30 40
Number of Processors

tﬁ University at Buffalo The State University of New York

Observation

e Using more processors decreases the run time of an algorithm (Not in all cases!).

* For smaller problem size, (n = 64,000), lower number of processors lead to better performance.
Why? — Because the time taken to communicate between the nodes is more than the time taken
to run the actual algorithm.

* This invalidates the assumption that “Throw in more processors for better performance”.

For any problem of size ‘n’, after a certain number of processors p’, the run time of the algorithm begins to
Increase due to the overhead of communication between the processors as stated above.

THANK YOU

% University at Buffalo The state University of New York

