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Objective

To experience the power of parallel computing using MPI by
iImplementing a parallel prefix operation.

Problem Statement

Application of parallel prefix: Identifying the maximum sum that can be computed using
contiguous elements in an array.

* Eg, Considerthe Array={-2,1,-3\,4,-1,2,1 /-5, 4}

e Maximumsum=06
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Parallel Prefix Algorithm

* Step 1: Perform a parallel prefix sum operation.
EQ:

Array:{-2,1,-3,4,-1,2,1,-5,4$:> {2,-1,-4,0,-1,1,2,-3,1}

Parallel Prefix Sum

* Step 2: Perform a parallel postfix max operation on the resultant array
Max Array ={-2,-1,4,0,-1,1,2,-3,1}=>{2,2,2,2,2,2,2,1,1}

Parallel Postfix Max
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Parallel Prefix Algorithm

* Step 3: Compute the following formula in parallel for every element,
Max_Array[i] — Sum[i] + Array]i]:
{2,4,3,6,2,3,1,-1,4}

* The maximum element in this array will be broadcasted to every processor.
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Parallel Prefix Algorithm

* Letthe problem size be “n”.
* Letthe number of processors we have be “p”.
 Whatif n >>p (very much greater)?
v" We can divide the problem so that each processor get a chunk of data of size n/p.

v" Consider,

Array={t2,1,-3,4,-1,2,1,-5,4,|....}size=n.

Size n/p Size n/p Size nlp ......

v’ Every processor will be responsible for a single chunk and will perform the parallel
prefix/postfix operation in sequential manner within the n/p chunk of data.
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Parallel Prefix Sum Simulation

> {-2,1,-3} {4,-1,2} {1,-5, 4

> {-2,-1,-4} {4,3,5} {1,-4, 0}

> {-2,-1,-4} {4,3,1} {1,-4,1}

> {-2,-1,-4} {0, -1, 1} {2, -3, 1} => Solution.
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Slurm Script

14 .0
—mpi/S4.1.3

obj]l max subarray.:
unlimited
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Analysis — Constant 'n’ & Variable Node ‘p’
* Problem Size — 64,000,000 (64 Million)

* Sequential running time (in milliseconds) : 2780.9118 ms

Number of Processors | Run Time (in milliseconds)
4
8

1108.829 ms

629.524 ms
16 301.566 ms
32 186.051 ms
64 83.160 ms
128 48.400 ms

256 27.883 ms
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Analysis — Constant ‘n’ & Variable Node ‘p’

RUN TIME (IN MILLISECONDS)
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Analysis - Different Problem Size

ANALYSIS DIFFERENT PROBLEM SIZE
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Analysis — Increasing Running Time

RUN TIME (IN MILLISECONDS)
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Observation

e Using more processors decreases the run time of an algorithm (Not in all cases!).

* For smaller problem size, (n = 64,000), lower number of processors lead to better performance.
Why? — Because the time taken to communicate between the nodes is more than the time taken
to run the actual algorithm.

* This invalidates the assumption that “Throw in more processors for better performance”.

For any problem of size ‘n’, after a certain number of processors p’, the run time of the algorithm begins to
Increase due to the overhead of communication between the processors as stated above.
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