CSE 708 - Programming Massively Parolle.
Systems

Parallel Maitrix Multiplication

Name: Ashutosh Dubey
UBIT Name: ashutos?

Person Number: 504/9324
Instructor: Prof. Russ Miller

-

Develop an ef
hardware acce
neural network:

 algorithm for
' convolufional

Ly ' ,v._..,,.

Practical Applice

voo4
-

> Compu’rer_:"
» Feafure Ex ,‘
» Image Prc

Sequential Approach

>

Ensure the no of cols of first maitrix A[n][n] equals the no of rows of
second matrix B[m][m].

Initialize an empty resulting matrix C

Create three nested for loops, the outermost loop would
iterate through no of rows of first martrix

The second loop would iterate through no of cols of second matrix
The third loop would iterate through no of rows of second matrix

Compute element-wise multiplication of Alil[k] and B[k][j] inside the
iInnermost loop and accumulate the products in a temporary
elle] o]l

Assign the sum to CJi][j]

Repeat above steps for all elements in C, with i ranging from O to n
and j from O fo m.

Sequential Imp Qutput

Tabular Data Graph

= Home > Dashboards > HPC Job Metrics o ¢ (@ 2023-10-1711:59:06 to a few secondsago v > @ & v A
cluster | ub-hpc v jobid 13735938

CPU Load CPU Usage

125

1

8000*8000 00:25:35

The output for the sequential implementation of matrix multiply program-

For two matrices A and B of size 8000*8000 sequentially, The graphs depicts that the running
time was around 25 mins which is quite a loft

The other graph showcases how the CPU utilization changed over time, it was around 8
percent at max and around 6 percent on average which is quite low

Setup

module load intel

export =/opt/software/slurm/1ib64/1ibpmi. so
mpicc mm_mpi_ lnode_ 2@cores mm_final.c
srun mm_mpi_lnode_2@cores

» We used a special command called --exclusive' in order to make
sure the computer program reserves all the processing power to
itself while running

» This command will tell the system to not to share any CPU cores with
any other program

» This is how we made sure that no other programs could make use of
the cores which were allocated to my program.

Setup

L N
Host: vortex.cbls.ccr.buffalo.edu
#!/bin/bash

#SBATCH --nodes=120
#SBATCH --ntasks-per-node=1

#SBATCH --constraint=IB|OPA

#SBATCH --time=00:58:00

#SBATCH --partition=general-compute
| #SBATCH --qos=general-compute

#SBATCH --job-name="mm_mpi_12@nodes_lcore"
#SBATCH --output=mm_mpi_12@nodes_lcore.out

#SBATCH --exclusive
module load intel
export I MPI PMI LIBRARY=/opt/software/slurm/1lib64/libpmi.so

mpicc -o mm_mpi_12@nodes_lcores mm_final.c
srun -n mm_mpi 120node lcores

‘nodes

is 120 which is
ilele

Je
| which is
Sr-node

- I'I'

r of nodes
cores per

ified 120
srun command

Parallel Approach using
MPI(Partially implemented)

Given Matrix A and B of size N*N, and we have p no of processors
The workload could be divided such that-

Each processor is responsible for (N/p) rows of matrix A and (N/p)
cols of matrix B.

Matrix A is partitioned into (N/p) equally-sized vertical strips, and
each processor is assigned one of these strips.

Maltrix B is similarly partitioned into (N/p) equally-sized horizontal
strips, and each processor is assigned one of these strips.

Each processor performs local matrix multiplication on its assigned
portion of A and B.

The local results from each processor are gathered and combined
to construct the final result matrix C.

MPI Library functions

>

MPI_Init(&arge, &argv): MPI library's initialization function. It is the starting point
for %ny MPI program and must be called before any other MPI functions are
used.

MPI_COMM_WORLD: a communicator that allows to perform communication
and coordination operations involving all processes in MPI program

MPI_Comm_rank(MPI_COMM_WORLD, &rank): To retrieve the rank of the calling
process within the specified communicator.

Rank: an integer value ranging from 0 to num cores - 1, where num cores is the
total number of cores in the communicator.

MPI_Comm_size (MPI_COMM_WORLD, &num cores): To retrieve the total number
of processes within the specified communicator

MPI Library functions

» MPI_Bcast : Broadcasts data from the process with rank O (the root
process) to all other processes in the specified communicator

» MPI_Gather: Collects data from each process's local result,
specifically the portion determined by starfing row, and combines
them into the result buffer on process 0 within the
MPI_COMM_WORLD communicator.

Parallel 2 processors

Tabular Data

8000*8000

Graph

= Home » Dashboards » HPC Job Metrics 2023-10-1711:31:48 to a few seconds ago v

Cluster | ub-hpc v | jobid 13735848 host cpn-m28-11-02 ~

CPU Load CPU Usage

15.00%

M3 M3 140

320 34 M3 M3 M40 A2 144 46 1148 110

min max avg curent v

cpn-m28-11-02

11:42

144 1146

min

| partfially implemented a parallel matrix multiplication algo with two processors on
matrices of size 8000x8000. The running time was approximately 17 minutes, @
significant improvement over the sequential version. The CPU utilization graph indicates
a maximum of 14% and an average of 12%, which is double the utilization observed in

the sequential approach.

Parallel 4 processors

Tabular Data Graph

= Home » Dashboards » HPC Job Metrics o < () 2023-10-1711:12:51 to a few seconds ago v

cluster ub-hpcv jobid 13735811 host cpn-m28-38-01 v

CPU Load CPU Usage

5

4

8000*8000 00:10:35

1124
min - max avg current v

0960 459 381 4n

Implemented parallel matrix multiplication algo with 4 processors on 8000x8000
maftrices. Running time was approximately 10 minutes, showing improvement
over the 2-processors execution. CPU utilization peaked at 26% and averaged
around 23%, nearly double that of the 2-processors execution.

Parallel 6 processors

Tabular Data Graph

= Home > Dashboards » HPC Job Metrics o ¢ (9 2023-10-1617:19:38 to a few seconds ago v

cluster - ub-hpc v jobid | [RERIIRYE st epn-q06-04-01 v

CPU Load CPU Usage

20.00%

8000*8000 00:08:35

0
17:20 17:21 7:22 7.23 17:24 7:25 17:26 727 17:28 cpn-q06-04-01- User

min max avg currentv

cpn-q06-04-01 0220 613 513 613

cpn-q06-04-01 - lowait

Implemented parallel matrix multiplication with 6 processors on
8000x8000 mattrices. Running time was approximately 8 minutes, an
improvement over the 4-processors execution. CPU utilization
peaked at 15% and averaged around 13% for 6 processors.

Parallel 8 processors

Tabular Data Graph

= Home » Dashboards » HPC Job Metrics

CPU Load CPU Usage

8000*8000 00:014:35

748 1750
X avg current v
7:44 17:46 17:48 17:50

min max avg curent v

0130 838 738

Implemented parallel matrix multiplication with 8 processors on
8000x8000 matrices. Running time was approximately 15 minutes,
slightly more than the 4 and é-processors executions. CPU utilization
peaked at 51% and averaged around 47%, likely influenced by inter-
process communication overhead.

Setup - 1 Node

Tabular Data Graph

Time Duration vs Number of Processors

16000*160 00:03:43
00

16000*160 00:02:02
00

16000*160 00:01:10
00

16000*160 00:00:40
00

16000*160 00:00:55
00

16000*160 00:00:59

(0 60 80 100
16000*160 00:01:00 Number of Processors

00

Time Duration (seconds)

Implemented parallel matrix multiplication algo from 20 to 140 processors on 16000 x 16000
maftrices. the running time decreased with an increasing number of cores up to 80 processors.
Beyond this point, the running time increased due to communication overhead. The threshold
for optimal performance was identified at 80 processors or cores per node

Key Observations

>

Running Time: The running time decreased significantly on the parallel
Implementation.

Running Time: The running time kept on decreasing while increasing the
no of cores from 2 processors to 4 processors and 4 processors to 6
Processors.

Threshold: As we know that after a certain threshold, parallelism does
not help in speedup due to overhead of infer-process communication.

Threshold point: While running on 8 processors, the running time
increased, It kept on increasing further with more cores.

CPU Utilization: It almost doubled on the parallel Implementation

CPU Utilization: It increased further on increasing num of cores from 2 to
4,

Next Steps

1“
-

cessors, going
d allocate it

HLA

» Asof now, M
forward wot
to processc

i)
T -'

v

Parallel Approach (Fully
Implemented)

Given Matrix A and B of size N*N, and we have p no of processors
The workload could be divided such that-

Each processor is responsible for (N/p) rows of matrix A and (N/p)
cols of matrix B.

Matrix A is partitioned into (N/p) equally-sized vertical strips, and
each processor is assigned one of these strips.

Matrix B is similarly partitioned into (N/p) equally-sized horizontal
strips, and each processor is assigned one of these strips.

Each processor performs local matrix multiplication on its assigned
portion of A and B.

The local results from each processor are gathered and combined
to construct the final result matrix C.

Setupl - 1 core per Node

Tabular Data Graph

Time Duration vs Number of Processors

16000*16000 00:01:49

16000*16000 00:00:40

oo
(=]

16000*16000 00:00:31

16000*16000 00:00:28

[}
o

16000*16000 00:00:26

n
h=l
=4
<]
o
@
kil
[=
=l
=
m
|
=]
a
u
E
}_

16000*16000 00:00:27

16000*16000 00:00:29

20 40 60 80 100 120 140 160

16000*16000 00:00:31 Number of Processors

In a single core per node setup, the parallel algorithm was tested with 16000*16000
maltrices, the running time decreased with an increasing number of cores up to 80 processors.
Beyond this point, the running time increased due to communication overhead. The threshold for
optimal performance was identified at 80 processors or cores per node

Setup 2 - 2 cores per Node

Tabular Data Graph

Time Duration vs Number of Processors

16000*16000 00:00:57

(%,
v

16000*16000 00:00:30

(%)
o

F=3
w

16000*16000 00:00:26

16000*16000 00:00:26

[¥1)
w

16000*16000 00:00:24

7
=

| =

[=]

[%]

L0
i)
c

2
£ 40
m

|

=)

[m]

au
E
'_

[¥¥]
o

16000*16000 00:00:25

2%
un

16000*16000 00:00:26

20 40 60 80 100 120 140 160

16000*16000 00:00:29 Number of processors

In multi core per node setup, the parallel algorithm was tested with
16000x16000 matrices. The running time decreased with an increasing number
of cores up to 100 processors. Beyond this point, the running fime increased
due to communication overhead. The threshold for optimal performance was
identified at 100 processors using 2 cores per node.

Setup 3 -4 cores per Node

Tabular Data Graph

Time Duration vs Number of Processors

16000*16000 00:01:00

16000*16000 00:00:31

w

16000*16000 00:00:27

-
(%]

16000*16000 00:00:22

16000*16000 00:00:26

w
[¥,]

w
=
5]
=
@
n
S
= 40
m
i
=
a1
©
E
=

16000*16000 00:00:23

W
o

16000*16000 00:00:29

]
()]

16000*16000 00:00:33

20 40 60 80 100 120 140 160 180
Number of Processors

16000*16000 00:00:37

In multi core per node setup, the parallel algorithm was tested with 16000x16000
matrices. The running time decreased with an increasing number of cores up to 80
processors. Beyond this point, the running fime increased due to communication
overhead. The threshold for optimal performance was idenfified at 80 processors
using 4 cores per node.

Setup 4 - 8 cores per Node

Tabular Data Graph

Time Duration vs Number of Processors

16000*16000 00:02:38
16000*16000 00:01:13

16000*16000 00:00:46

=
rJ
o

16000*16000 00:00:34

16000*16000 00:00:30

[e:]
(=]

16000*16000 00:00:27

Time Duration (seconds)

[=1]
[=]

16000*16000 00:00:26

Y
o

16000*16000 00:00:41

16000*16000 00:00:53

)
o

20 40 60 80 100 120 140 160 180

16000*16000 00:00:57 Number of Processors

In multi core per node setup, the parallel algorithm was tested with 16000x16000
matrices. The running fime decreased with an increasing number of cores up to
136 processors. Beyond this point, the running fime increased due to
communication overhead. The threshold for optimal performance was identified
at 136 processors using 8 cores per node.

Key Observations

» Running Time: The running time decreased significantly on the
parallel implementation.

» Running Time: The running time decreased significantly while
increasing the no of cores per node from 2 to 4 cores and 4 to 6
cores and 6 to 8 cores.

» Threshold: As we saw that after a certain threshold, parallelism does
not help in speedup due to the overhead of infer-process
communication.

» Threshold point: While running on more than 8 cores per node, the
running fime increased, It kept on increasing further with more
nodes.

Referencesi

il
L

> MPITutor IR
> MPI Docs- h
> Dr Jones Le
> MCITp|‘

https://mpitutorial.com/tutorials/
https://www.mpi-forum.org/docs/
https://matplotlib.org/

	Slide 1: CSE 708 - Programming Massively Parallel Systems Parallel Matrix Multiplication Name: Ashutosh Dubey UBIT Name: ashutos2 Person Number: 50479324 Instructor: Prof. Russ Miller
	Slide 2: Problem Statement
	Slide 3: Practical Applications
	Slide 4: Sequential Approach
	Slide 5: Sequential Imp Output
	Slide 6: Setup
	Slide 7: Setup
	Slide 8: Parallel Approach using MPI(Partially implemented)
	Slide 9: MPI Library functions
	Slide 10: MPI Library functions
	Slide 11: Parallel 2 processors
	Slide 12: Parallel 4 processors
	Slide 13: Parallel 6 processors
	Slide 14: Parallel 8 processors
	Slide 15: Setup - 1 Node
	Slide 16: Key Observations
	Slide 17: Next Steps
	Slide 18: Parallel Approach (Fully implemented)
	Slide 19: Setup1 - 1 core per Node
	Slide 20: Setup 2 - 2 cores per Node
	Slide 21: Setup 3 - 4 cores per Node
	Slide 22: Setup 4 - 8 cores per Node
	Slide 23: Key Observations
	Slide 24: References
	Slide 25

