CSE 702: SEMINAR ON
PROGRAMMING MASSIVELY
PARALLEL SYSTEMS

Learning and Implementing Parallel
Odd-even sort using MPI in C

PREPARED BY:
Charushi Nanwani (UB PERSON NUMBER: 50248736)

University at Buffalo
School of Engineering and Applied Sciences

G

University at Buffalo
School of Engineering and Applied Sciences

G

University at Buffalo

School of Engineering and Applied Sciences

Overview

- Bubble Sort

- Odd Even Transposition Sort

- Sequential and Parallel Algorithms
- Implementation

- Obtained Results

- Observations

- References

University at Buffalo

School of Engineering and Applied Sciences

Bubble Sort

- Compares two consecutive values at a time and swaps them if they are out of order

« Number of comparisons and swaps:n(n-1)/2 which corresponds to a time complexity O(N?)

1 void Bubble_sort(

2 int al[l] /% in/out =/,

3 int n /% 1N w/) |

4 int list_length, i, temp;

5

6 for (list_length = n; list_length >= 2; list_length—)
7 for (i = 0; i < list_.length-1; i++)
8 if (a[i) > a[i+1]) {

9 temp = al[i)l;

10 ali) = al[i+1);

11 ali+l] = temp:

12]

13

14 } /% Bubble_sort »/ 4

University at Buffalo

G5 | School of Engineering and Applied Sciences

Odd Even Transposition sort

* Variant of the Bubble Sort
« QOperates in two alternate phases

e Phase Even

e even processes exchange values with right neighbors
* Phase Odd

» odd processes exchange values with right neighbors
 List will always be sorted after n phases

University at Buffalo

School of Engineering and Applied Sciences

Sequential Odd Even Sort

Unsorted 1 void Odd_even_sort(
2 int all /% infout =/,
A 3| 8, 5| 6, 4| 1, 3 int n M in x/) |
Phase1(odd) 4 int phase, i, temp;
2 = 3 8) 6 1 4 5 SR :
5 . 4 - 3 1 5 4T3hase2(even) 6 for (phase = 0; phase < n; phase++)
7 if (phase ¥ 2 = 0) { /% Even phase x/
— — — L— Phase3(odd) 8 for (i =1; 1 <n;i+=2)
2 = 3 5 1 8 4 6 9 if (a[i-1] > a[il]) {
b b o Phase4(even) 10 temp = a[il;
2 3 3 1 5 4 8 6 11 a[i] = a[i-1);
L I I— L— phase5(odd) 12 a[i-1] = temp;
2 3 41 3 _4 5 8 8 13 l
A S b Phase6(even) 14 | else yfﬂ Qddjﬂmse *{ |
2 1 3 3 4 5 6 8 15 for.'-,? =].. i < l.]"‘l: 1 += 2)
l I I | l] | | Phase7(odd) 16 if Ea[1;> a£}+111{
17 temp = a[i);
1 2 3 3 4 5 6 8 8 a[il = a[i+1]:
— L Phaseseven)| | aLi+1] = temp:
1 2 3 3 4 5 6 8 20 |
1] I P | ;] }
Sorted g
22 '} /x 0Odd_even_sort x/ 6

University at Buffalo

School of Engineering and Applied Sciences

Parallel Algorithm
Process
Time 0 | 2 3

Start 15.11.9. 16 3.14,8,7 4,6,12, 10 5.2.13. 1
After Local Sort || 9. 11, 15. 16 3,7.8, 14 4,6, 10, 12 9 T
After Phase 0 3.7, 8,9 11, 14, 15. 16 1.2.4.5 6,10, 12, 13
After Phase | 3.7, 59 - S 11,14,15,16 | 6,10,12, 13
After Phase 2 1,2, 3,4 5, 7,89 6,10, 11,12 | 13, 14,15, 16
After Phase 3 1.2,3.4 0 1.8 .12 | IS 19015, 16

University at Buffalo

School of Engineering and Applied Sciences

Implementation

e n elements and p processors

e each processor receives n/p elements ODD PHASE

e sort local elements using quicksort (faster!)

e 0Odd Phase: RANK:| 0 1 2

o (p1,p2), (p3,p4),
o the two processors exchange data

o odd numbered processor keeps the lowest of n/p elements
o even numbered processor keeps the highest of n/p elements

e Even Phase:
o (p0,p1), (P2,p3), EVEN PHASE
o even numbered processor keeps lowest of n/p elements
o odd numbered processor keeps highest of n/p elements

List 537 821 694

RANK: 0 1 2

Listt 537 821 694

8

University at Buffalo

School of Engineering and Applied Sciences

Script for running SLURM job

#!/bin/sh

#SBATCH --nodes=32

#SBATCH --ntasks-per-node=1

#SBATCH --constraint=IB

#SBATCH --partition=general-compute --qos=general-compute
#SBATCH --time=12:00:00

#SBATCH --mail-type=END

#SBATCH --mail-user=charushi@buffalo.edu
#SBATCH --output=odd_even_n1_32.out
#SBATCH --job-name=testing_mpi_odd_even
#SBATCH --requeue

echo "SLURM NODES"=$SLURM_NNODES
module load intel/14.0

module load intel-mpi/4.1.3

module list

#mpicc -Im -0 odd_even mpi_odd_even.c
ulimit -s unlimited

export |_MPI_PMI_LIBRARY=/usr/lib64/libpmi.so

mpicc -Im -0 odd_even_n1_32 mpi_odd_even.c
time srun ./odd_even_n1_32 g 1000000

#
echo "All done!"

University at Buffalo

School of Engineering and Applied Sciences

Parallel Running Time

of elements: 2 million

Key Size (2000000)

0.3 0.29

Nodes Runtime T
2 029
4 DAL -
8 0.11:
16 0.08
32 0.06 .
64 0.04
128 0.03 |
256 0.03 : “

Nodes

10

University at Buffalo

School of Engineering and Applied Sciences

Speedup: Ratio of serial
Parallel Speedup runtime of sequential algorithm

for solving a problem to the
time taken by the parallel
algorithm for solving the same
problem

S=TI/T
s p

Speedup-Key Size (2000000)

2 1.862

& 4 3.1764
§ 9 8 4.909
o 16 6.75
32 E

T asom 64 13.5
128 18

2 256 18

0 50 100 150 200 250
11

Nodes

University at Buffalo

School of Engineering and Applied Sciences

Efficiency: Measures the fraction of

Parallel EffiCiency time, for which a processor is
usefully utilized.
E =S/p
E=T/pT,
Nodes Efficiency
2 0.931
4 0.7941
8 0.6136
16 0.4219
32 0.2812
64 0.2109
128 0.1406
256 0.0703

University at Buffalo

School of Engineering and Applied Sciences

Parallel Runtime

of elements: 4 million

Nodes Runtime
2 0.59

0.33

8 0.2

16 0.13

32 0.09

64 0.09

128 0.07
256 0.08

0.6

0.5

F 03

0.2

0.59

0.33

0.20

0.13

0.09

0.09

50

Key Size (4000000)

0.07

100 150

200

250

0.08

University at Buffalo

School of Engineering and Applied Sciences

Speedup

Speedup-Key Size (4000000)

} 16.2857 Mes Speedup

) 2 1.9322

) 4 3.4545

8 5.7

i 16 8.7692
8 32 12.6666

6 64 12.6666

’ 128 16.2857

: 256 14.25

Nodes

14

University at Buffalo

School of Engineering and Applied Sciences

Efficiency

Efficiency-Key Size (4000000)

— Nodes Efficiency

2 0.9661

4 0.8636
8 0.7125

16 0.548
32 0.3958
64 0.1979

128 0.1272

O 256 0.0556

15

University at Buffalo

School of Engineering and Applied Sciences

of elements: 8 million

Key Size (8,000,000)

Nodes Runtime
2 121|
0.65
8 041 =
16 0.27|" =
32 0.17|
64 0.13
128 0.12| ' e

University at Buffalo

School of Engineering and Applied Sciences

Speedup

Speedup-Key Size (8000000)

Nodes Speedup

‘8 2 1.9173
4 3.5692

. 8 5.6585
. 16 8.5925
32 13.647

64 17.8461

128 19.3333

17

University at Buffalo

School of Engineering and Applied Sciences

Efficiency

Efficiency-Key Size (8000000)

2 0.9586

4 0.8923

8 0.7073
16 0.537
32 0.4265
64 0.2788

) 128 0.151

18

University at Buffalo

School of Engineering and Applied Sciences

Observations

e The runtime decreases on increasing the processors, but after a certain extent,
becomes constant or increases again.

e Jobs with larger numbers as input are bound by sequential computation time for a small
number of processors, but eventually adding processors causes communication time to
take over.

e Communication overhead decreases speedup for a large number of processors (128,
256)

e Parallel computing is useful when the number of processors are small, or when the
problem is perfectly parallel, and has a large amount of data which requires
computation.

19

University at Buffalo

School of Engineering and Applied Sciences

Things I learned

Writing MPI programs in C

How jobs are submitted and scheduled on CCR
Basic slurm commands, as well as monitoring jobs
Tradeoffs associated with using different number of
processors

e Different factors that affect whether or not a job will
parallelize well

o Sequential Runtime and Communication Time

20

University at Buffalo

School of Engineering and Applied Sciences

References

* Dr. Russ Miller's webpage: https://cse.buffalo.edu/faculty/miller/teaching.shtml

* Parallel Computing Sorting
https://cs.nyu.edu/courses/spring14/CSCI-UA.0480-003/lecture11.pdf

e https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-trai
ning-documents

 http://www.dcc.fc.up.pt/~fds/aulas/PPD/1112/sorting.pdf

 https://www.cs.uky.edu/~jzhanq/CS621/chapter7.pdf

21

https://cse.buffalo.edu/faculty/miller/teaching.shtml
https://cs.nyu.edu/courses/spring14/CSCI-UA.0480-003/lecture11.pdf
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-documents
https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-documents
http://www.dcc.fc.up.pt/~fds/aulas/PPD/1112/sorting.pdf
https://www.cs.uky.edu/~jzhang/CS621/chapter7.pdf

University at Buffalo

School of Engineering and Applied Sciences

Thank you!

22

