
BILATERAL FILTER
IN CUDA
CSE 708: Programming Massively Parallel Systems

Guide: Dr. Russ Miller

Presenter: Gaurav Nathani

Filters

• All digital images have noise and filters are used to reduce the noise.

• Different type of noise requires different filter.

• Types of Noise: Gaussian, Salt & Pepper, Poisson, Speckle.

• Types of Filters: Mean, Median, Box, Bilateral, Gaussian, Fourier Transform, Wavelet Transform.

• Focus on Bilateral Filters which is used to reduce Gaussian noise.

2

Bilateral Filter
• Gaussian filter considering neighboring pixel intensity is Bilateral Filter.

• BF(x,y) = g(x,y) * g(Ix-Iy)

• Ix & Iy are intensities of pixels at x & y position on the image grid.

• Both sigma values in above equation are different and are parameters of the bilateral filter function
which determine the amount of noise reduction in the image.

3

GPUs
• GPGPUs pack many “simple” cores (shared processors/SPs) in several multiprocessors (shared

multiprocessors/SMs) with no-cost of context switching.

• Each SP has its local registers (pixel intensity at position), several SPs within SM have shared memory
(submatrix), SMs share device global memory (full image matrix loaded in global memory). Similar hierarchy for
cache as well.

• Constant memory used for parameters that don’t change throughout execution (sigma values & pi).

• Texture memory used to prevent bank conflicts. It has associated texture cache used as well.

• User defines CUDA kernel that copies memory from host to device, launches threads on all SMs concurrently.

• Threads grouped (logically) into blocks and blocks grouped into grid by the user's kernel.

• GPUs group threads in warps for execution.

4

GPU Architecture

5

NVIDIA GeForce GTX 1660Ti – TU116-400-1A
SMs 24

CUDA Cores 1536

GPU Boost Clock 1770 MHz

FLOPS 11 TFLOPS

Total Amount of Global Memory 14259 MB

Shared Memory 8115 MB

L1 Cache 1536 KB

CUDA 7.5

6

Parallelizing Bilateral Filter in CUDA
• Create a kernel function to execute bilateral filter with parameters

- d : Diameter of Pixels Neighborhood

- Sigma Color : Determines mixing of colors

- Sigma Space : Determines mixing of far apart pixels

• 2D decomposition of matrix – large submatrix data copied to shared memory of SMs, part of
submatrix handled by SPs by moving data from shared memory to its local registers.

7

Methodology
1. Read a large image in greyscale using OpenCV.

2. Add Gaussian noise to the image.

3. Apply OpenCV's bilateral filter on CPU and time the run.

4. Run the parallel bilateral filter on GPU and time the run.

5. Resize the image (downscale from original) and repeat.

* For parallel algorithm – kept the block size same as 64*64.

8

Image Processing – Adding Gaussian Noise

Original Greyscale Image Image with Gaussian Noise Added

Image Processing – Over/Under Filtering

Under-filtered Image Over-filtered Image

Image Processing – Adequate Filtering

Image with Gaussian Noise Bilateral Filtered Image with apt Sigma Values

Results

12

Width Height Time (CPU) Time (GPU) Speedup
48384 32256 37636.8 506.13492 74.3612
24192 16128 2423.09 60.800693 39.853
12096 8064 586.018 31.784889 18.437
6048 4032 162.748 20.174538 8.067
3024 2016 37.6955 8.4861549 4.442
1512 1008 11.1166 3.4416718 3.23
756 504 3.0405 1.078574 2.819
378 252 2.475 1.1921965 2.076

* Block Size = 64 * 64

Speedup

13

0

10

20

30

40

50

60

70

80

48384 * 32256 24192 * 16128 12096 * 8064 6048 * 4032 3024 * 2016 1512 * 1008 756 * 504 378 * 252

Speedup

Profiler Observations
Type Time(%) Time Calls Avg Min Max Name

GPU activities: 99.99% 69.3475s 1 69.3475s 69.3475s 69.3475s process_bilateral_filter(…)
0.00% 2.2434ms 4 560.85us 1.1200us 2.2400ms [CUDA memcpy HtoD]
0.00% 2.1547ms 1 2.1547ms 2.1547ms 2.1547ms [CUDA memcpy DtoH]

API calls: 99.74% 69.3526s 2 34.6763s 2.5085ms 69.3501s cudaMemcpy
0.26% 179.43ms 2 89.716ms 220.15us 179.21ms cudaMalloc
0.00% 423.53us 2 211.77us 99.944us 323.59us cudaFree
0.00% 304.88us 1 304.88us 304.88us 304.88us cuDeviceTotalMem
0.00% 181.13us 101 1.7930us 117ns 79.053us cuDeviceGetAttribute
0.00% 71.666us 1 71.666us 71.666us 71.666us cudaLaunchKernel
0.00% 62.397us 3 20.799us 8.6280us 44.373us cudaMemcpyToSymbol
0.00% 27.370us 1 27.370us 27.370us 27.370us cuDeviceGetName
0.00% 8.6890us 1 8.6890us 8.6890us 8.6890us cuDeviceGetPCIBusId
0.00% 3.1250us 2 1.5620us 156ns 2.9690us cuDeviceGet
0.00% 1.0600us 3 353ns 164ns 700ns cuDeviceGetCount
0.00% 220ns 1 220ns 220ns 220ns cuDeviceGetUuid

14* Profiling for one of the runs of 24192 x 16128 with block size of 64*64

Future Work
• Can we use texture memory in a better way?

• Compare runtime with varying block sizes; expected larger block size suitable for larger inputs.

• Run the bilateral filter on RGB scale images – handle 3 different matrices.

• Try implementing other filters to compare results.

15

References
1. https://www.geeksforgeeks.org/python-bilateral-filtering/

2. https://www.tutorialspoint.com/opencv/opencv_bilateral_filter.htm

3. https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html

4. https://en.wikipedia.org/wiki/Bilateral_filter

5. https://github.com/aashikgowda/Bilateral-Filter-CUDA

16

https://www.geeksforgeeks.org/python-bilateral-filtering/
https://www.tutorialspoint.com/opencv/opencv_bilateral_filter.htm
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
https://en.wikipedia.org/wiki/Bilateral_filter
https://github.com/aashikgowda/Bilateral-Filter-CUDA

Questions?

Thank you!

17

THANK YOU!

