
Image segmentation with parallel K means

Image segmentation with Parallel Kmeans

using MPI and OpenMP

Author: Gautam Shende

CSE 702: Programming Massively Parallel Systems

Instructor: Dr. Russ Miller

Date: 12/06/2018

1

Image segmentation with parallel K means

OVERVIEW

2

1. Clustering

2. K means

3. Parallel MPI Model

4. Parallel OpenMP Model

5. Results

6. Inferences

7. References

Image segmentation with parallel K means

1) CLUSTERING

3

Image segmentation with parallel K means

CLUSTERING

4

1. Partitioning of data into subsets called clusters

2. Similar elements placed in same cluster. Similarity is calculated
based on some distance metric such as euclidean distance or
hamming distance.

3. Example :
Dataset = {US, CHN, IN, CA}
No of clusters = 2

Cluster 1: US, CA
Cluster 2: CHN, IN

Image segmentation with parallel K means

2) K-Means

5

Image segmentation with parallel K means

Sequential K means

6

1. Select k i.e. the number of clusters

2. Use any strategy* to select k points to be cluster centers.

3. Put each point in the data set in the cluster which has its center
closest to the point

4. Calculate new cluster centers by taking means of all points in a
cluster

5. Repeat 3 and 4 until convergence

Image segmentation with parallel K means

EXAMPLE

7

- U = {1,6,10,18,3,14} , K=2

- ASSUME CLUSTER CENTERS TO BE C1 = 1, C2 = 6

- CLUSTER C1: {1,3} , CLUSTER C2: {6,10,18,14}

- UPDATE CENTRE C1 = AVG {1,3} = 2
UPDATE CENTRE C2 = AVG {6,10,18,14} = 12

- UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

- UPDATE CENTRE C1 = AVG {1,3,6} = 3.333
UPDATE CENTRE C2 = AVG {10,18,14} = 14

- UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

- NO CHANGE IN CLUSTER CONFIGURATION (CONVERGENCE)
-> STOP <-

Image segmentation with parallel K means

3) Parallel MPI Model

8

Image segmentation with parallel K means

MPI MODEL PARAMETERS

9

*local parameter = Max iterations (=25)

Complexity: O(input*K*iterations*dimensions)
 = O(nfiles*filesize*cK*max_iterations*dimensions)
 = ~(32*10240*32*25*3) = ~1 billion calculations

Repository: https://github.com/thezodiac1994/Parallel-Alogrithms

Image segmentation with parallel K means

FLOW OF PARALLEL
PROGRAM

10

1. Allot k cluster centers to the nodes(n) equally
such that each node is responsible for (k/n)
clusters
< populate_data(), populate_clusters() >

2. Now Each node does the following

a. Calculate centers of (k/n) clusters by mean
b. Broadcast (k/n) centers to all other nodes
c. Receive (k/n) centers from every other

node
d. Calculate distance of all points from all

centers and find closest cluster
e. Send and receive points (internal and

external transfers)
 < re_clusterify(), bcast_and_check_means() >

 3. Repeat until Convergence (stopping condition)
- No internal/external transfers i.e Centers

remain constant
 < check_stop_condition() >

MPI MODEL FLOW

Image segmentation with parallel K means

4) Parallel OpenMP Model

11

Image segmentation with parallel K means

 OpenMP MODEL PARAMETERS

12

Repository: https://github.com/thezodiac1994/Parallel-Alogrithms

Image segmentation with parallel K means 13

➔ Request for nc number of threads/cores and
MAKE SURE we actually get them on the
allotted machine.

➔ Allot equal (data/k) points to each cluster initially
This Data is global and visible to all. However, to
Handle accessing, we use indexing of Data array.
Each core takes care of (k/nc) clusters depending
on thread id.

OpenMP MODEL FLOW

Image segmentation with parallel K means 14

➔ For each point, the respective thread will calculate the closest
cluster and add the point to respective closest clusters
incoming list of points.

Since the list of incoming points is global and shared, it has to
be done in the critical section.

➔ Once points are rotated, the centers need to be updated.

The centers can be updated in the critical section but I made
use of locks to make it more efficient since we only need to
lock one value/index at a time.

OpenMP MODEL FLOW

Image segmentation with parallel K means 15

OpenMP MODEL FLOW

➔ Use just one core (omp single) to
asynchronously (omp nowait) to do final
calculations such as validation checks,
time calculations and writing to file.

Image segmentation with parallel K means

5) RESULTS

16

Image segmentation with parallel K means

a) Constant Input Size
(512 x 640 = ~0.3 m data points)

17

Image segmentation with parallel K means

i) MPI: Nodes vs Time

18

Nodes Time

1 2.502

2 2.190

4 1.555

8 1.472

16 1.565

32 1.652

Image segmentation with parallel K means

ii) MPI: Speedup

19

Nodes Time

1 1.000

2 1.143

4 1.609

8 1.699

16 1.599

32 1.514

Relative to performance of single MPI node of same model

Image segmentation with parallel K means

iii) OpenMP: Cores vs Time

20

(1 thread per core)

Cores Time

1 4.075

2 3.565

4 2.812

8 2.188

16 1.548

32 1.590

Image segmentation with parallel K means

iv) OpenMP: Speedup

21

(1 thread per core)

Cores Time

1 1.000

2 1.143

4 1.449

8 1.862

16 2.633

32 2.562

Image segmentation with parallel K means

v) OpenMP: Cores vs Time - img2

22

(1 thread per core)

Cores Time

1 3.907

2 3.327

4 2.715

8 2.243

16 1.740

32 1.648

Image segmentation with parallel K means

b) Scaling Input with processors/cores
(~0.3m to ~10m data points)

23

Image segmentation with parallel K means

i) MPI: Scaling input with processors

24

Nodes Data
(c = 512*768 =~0.3 mil)

Time

1 1c 2.65

2 2c 4.41

4 4c 6.41

8 8c 11.50

16 16c 24.66

32 32c 51.83

Image segmentation with parallel K means

ii) OpenMP: Scaling input with cores

25

Cores Data
(c = 512*768 = 0.3 mil)

Time

1 1c 4.17

2 2c 6.81

4 4c 10.34

8 8c 16.29

16 16c 37.22

32 32c 54.75

Image segmentation with parallel K means

b) Comparing MPI with OpenMP
(leaving hardware specifics)

26

Image segmentation with parallel K means

i) constant input size: cores/nodes vs time
(*separate run)

27

Nodes/ Cores
log2

Time
MPI

Time
OMP

0 2.502 4.075

2 2.190 3.565

4 1.555 2.812

8 1.472 2.188

16 1.565 1.558

32 1.652 1.590

Inpsize = ~0.3 mil (512x640)

Image segmentation with parallel K means

ii) MPI vs OpenMP
 scaling input size (*separate run)

28

Nodes/
Cores
(log2)

 Data
(c=~0.3mil)

Time
MPI

Time
OMP

0 1c 2.642 4.170

1 2c 4.413 6.807

2 4c 6.413 10.340

3 8c 11.499 16.291

4 16c 24.655 37.216

5 32c 51.832 54.751

Image segmentation with parallel K means

c) A visualization of OpenMP output

29

Image segmentation with parallel K means 30

Expected K means (OMP)

➔ The highest intensity cluster closely represents the faults along with some false positives

Image segmentation with parallel K means

6) INFERENCES

31

Image segmentation with parallel K means

 Inferences

32

1) For my model, 8 nodes for MPI and 16 cores are ideal from performance
perspective

2) 32 cores beats 32 nodes by a small margin ! (Hardware specifics not
known)

3) OpenMP is far easier to code than MPI (150 lines vs 600 lines of code).

4) Problem is fairly parallelizable and scalable (advisable under 32
nodes/cores). I needed close to 1 minute on python for 25 iterations on a
single image as compared to <2 seconds on MPI and OpenMp with 16
cores/nodes.

Image segmentation with parallel K means

7) REFERENCES

33

Image segmentation with parallel K means

REFERENCES

34

1) Algorithms Sequential & Parallel: A Unified Approach
(Dr. Russ Miller, Dr.Laurence Boxer)

2) https://ubccr.freshdesk.com/support/solutions/articles/1300002624
5-tutorials-and-training-documents
(Dr. Matthew Jones)

3) A Parallel K-Means Clustering Algorithm with MPI
(Jing Zhang, Gongqing Wu, Xuegang Hu, Shiying Li, Shuilong
Hao)

4) https://www.buffalo.edu/ccr/support/ccr-help.html
(UB CCR help)

5) Stackoverflow (for general MPI questions)

Image segmentation with parallel K means

 QUESTIONS ?

35

