Image segmentation with Parallel Kmeans

using MPI and OpenMP

Author: Gautam Shende

CSE 702: Programming Massively Parallel Systems

Instructor: Dr. Russ Miller

Date: 12/06/2018

Image segmentation with parallel K means

OVERVIEW

SEROT S OORIDR

Clustering

K means

Parallel MP1 Model
Parallel OpenMP Model
Results

Inferences

References

Image segmentation with parallel K means

1) CLUSTERING

entation with parallel K means

CLUSTERING

Partitioning of data into subsets called clusters

Similar elements placed in same cluster. Similarity is calculated
based on some distance metric such as euclidean distance or
hamming distance.

Example :
Dataset = {US, CHN, IN, CA}
No of clusters = 2

Cluster 1: US, CA
Cluster 2: CHN, IN

Image segmentation with parallel K means

2) K-Means

Image segmentation with parallel K means

Sequential K means

1. Select k i.e. the number of clusters
2. Use any strategy” to select k points to be cluster centers.

3. Put each point in the data set in the cluster which has its center
closest to the point

4. Calculate new cluster centers by taking means of all points in a
cluster

5. Repeat 3 and 4 until convergence

Image segmentation with parallel K means

EXAMPLE

U={1,6,10,18,3,14} , K=2
ASSUME CLUSTER CENTERS TOBE C1=1,C2=6
CLUSTER C1: {1,3}, CLUSTER C2: {6,10,18,14}

UPDATE CENTRE C1=AVG {1,3} =2
UPDATE CENTRE C2 = AVG {6,10,18,14} = 12

UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

UPDATE CENTRE C1 = AVG {1,3,6} = 3.333
UPDATE CENTRE C2 = AVG {10,18,14} = 14

UPDATED CLUSTER C1: {1,3,6}
UPDATED CLUSTER C2: {10,18,14}

NO CHANGE IN CLUSTER CONFIGURATION (CONVERGENCE)
-> STOP <-

Image segmentation with parallel K means

3) Parallel MPI Model

Image segmentation with parallel K means

MPI MODEL PARAMETERS

<string.h>

max(x,y) ((x>y)? x:y)
min(x,y) ((x<y)? x:y)

np 32
nfiles 32%1
filesize 10240
cK 32
range 256

float precision = 0.0001;

*local parameter = Max iterations (=25)

Complexity: O(input*K*iterations*dimensions)
= O(nfiles*filesize*cK*max_iterations*dimensions)
= ~(32*10240*32*25*3) = ~1 billion calculations

Repository: https://github.com/thezodiac1994/Parallel-Alogrithms

Image segmentation with parallel K means

MPI MODEL FLOW

int main (int argv, char ** argc) {

int MAXITER = 300;
double start = 0,end = 0, total_time = 0;

MPI_Init(8argv,8argc); . Allot k cluster centers to the nodes(n) equally

int node,csize,i,temp; R .

HPE=cons= rak (MPI COMLHORLD. 8hode) o such that each node is responsible for (k/n)
MPI_Comm_size(MPI_COMM_WORLD,&csize);

populate_data(node); // read from files and populate data CIUSterS

populate_clusters(cK/np,node); // cK/np is the number of clusters per node < populate data(), populate Clusters() >

MPI_Barrier (MPI_COMM_WORLD);
start = MPI_Wtime();

[niElatlize ai1 means(ek/no): . Now Each node does the following
int iter = o0 a. Calculate centers of (k/n) clusters by mean
5 : > \ K A
while((iter<MAXITER) && (!check_stop_condition(cK/np))){ b Broadcast (k/n) CenterS tO a” Other nOdeS
copy_centers(cK/np); // to check stop condition .
re_clusterify(cK/np,node); // calculate closest cluster and perform transfers to form updated clusters C. Rece|ve (k/n) CenterS from every Other
bcast_and_get_means(cK/np,node); // calculate and broadcast new means for updated clusters
check_stop_condition(cK/np); nOde
iter++; . .
1F((iter%20==0) & (node==0))//{ d. Calculate distance of all points from all
printf("ITERATION %d\n",iter); 1
. centers and find closest cluster
T e. Send and receive points (internal and
d = MPI_Wtti 5
e o e external transfers)
sum_validation(cK/np,node); // sum of all points at beginning and the end is same < re_CIUSterlfy()’ bcaSt_and_CheCk_means() >
// model_validation(cK/np,node); // each point is actually in a cluster closest to it -> only true for convergence
e . Repeat until Convergence (stopping condition)
freopen("results.txt","a+",stdout); . q
printf("\nNo of iterations for convergence = %d : assuming that it did not reach MAXITER (%d)\nTOTAL TIME = %.3f = NO Intema|/eXterna| tranSferS l.e Centers
intdefi 5 .
primteeTInes remain constant
MPI_Finalize(); < check_stop_condition() >

return 0;

Image segmentation with parallel K means

4) Parallel OpenMP Model

Image segmentation with parallel K means

OpenMP MODEL PARAMETERS

<omp.nh>
<bits/stdc++.h>

int get rand()
{

std::mt19937 rng;
rng.seed(std::random device()());
std::uniform int distribution<std::mt19937::result type> dist6(1,6);

dist6(rng);
std;

int MAX ITER = 25

int datasz = 512%640;

nt K = 32;

int data per cluster = datasz/K;
vector <vector <double>> Data(K,vector <double> (data per cluster));
int nc=2;

Repository: https://github.com/thezodiac1994/Parallel-Alogrithms

Image segmentation with parallel K means

OpenMP MODEL FLOW

omp set num threads(nc);
double t1 = omp get wtime();

Request for nc number of threads/cores and
MAKE SURE we actually get them on the
omp parallel allotted machine.
omp single
{

cout << omp get num procs() << "cores are available at this time

}

int net = 0; Allot equal (data/k) points to each cluster initially
(int 1=0;i<K;i++){) This Data is global and visible to all. However, to
Lo j;”?’fé Fl.] (‘15“'25()i 1 i Handle accessing, we use indexing of Data array.
(Eln J>; "[’);:a?ﬁ—[???c Uster;j+t) Each core takes care of (k/nc) clusters depending
} : on thread id.
cout << "Net data = " << net << endl;

Image segmentation with parallel K means

OpenMP MODEL FLOW

(!present){

int closest = closest centers[get rand() % closest centers.size()];
omp critical

{

Data incoming[closest].push back(Data[cluster][point]);
Data[cluster][point] = Data[cluster].back();
Data[cluster].pop back();

omp set lock(&my locks[cluster]);
Centers[cluster] = sum*1.0/Data[cluster].size()*1.0;
omp unset lock(&my locks[cluster]);

omp barrier

For each point, the respective thread will calculate the closest
cluster and add the point to respective closest clusters
incoming list of points.

Since the list of incoming points is global and shared, it has to
be done in the critical section.

Once points are rotated, the centers need to be updated.

The centers can be updated in the critical section but | made
use of locks to make it more efficient since we only need to
lock one value/index at a time.

Image segmentation with parallel K means

OpenMP MODEL FLOW

omp single nowait

net = 0;

(int temp=0;temp<K;temp++){

cout << Centers[temp] << " = center, # = " << temp << endl;])

net += Data[temp].size(); -> Use just one core (omp single) to
} . .
double t2 = omp get wtime(); asynchr_onously (omp n(.)WEl.It) gido final

calculations such as validation checks,

std: :ofstream outfile; time calculations and writing to file.

outfile.open("results.txt", std::ios base::app);
outfile << "Total data = " << net << ", ";
outfile << "K = " << K<< ", ";

outfile "cores = " << omp get max threads() <<
outfile “filename = " << argv[2] << ", ";
outfile “Total time = " << t2-tl1 << endl;

Image segmentation with parallel K means

5) RESULTS

Image segmentation with parallel K means

a) Constant Input Size
(512 x 640 = ~0.3 m data points)

Image segmentation with parallel K means

i) MPIl: Nodes vs Time

Nodes

16

32

Time

2.502

2.190

1.555

1.472

1.565

1.652

Increasing Nodes keeping Input Constant

, 1.652)

1, 2.502)

2.4

2.2
)
0 2.0 4
£
l_

1.8 A

1.6 A

0 5 10 15 20 25 30

No of processors

Image segmentation with parallel K means

ii) MPI: Speedup

Nodes Time
1 1.000
2 1.143
4 1.609
8 1.699
16 1.599
32 1.514

MPI relative speedup

T T T T T T T

0 5 10 15 20 25 30
No of processors

Relative to performance of single MPI node of same model

Image segmentation with parallel K means

, 1.514)

iii) OpenMP: Cores vs Time

Cores

16

32

(1 thread per core)

Time

4.075

3.565

2.812

2.188

1.548

1.590

Increasing Cores keeping Input Constant

_&32

Image segmentation with parallel K means

10

15 20
No of cores (OMP)

25

30

, 1.59)

iv) OpenMP: Speedup

Cores

16

32

(1 thread per core)

Time

1.000

1.143

1.449

1.862

2.633

2.562

OpenMP relative Speedup

2.633)

__§32

0 5 10 15 20 25
No of cores (OMP)

Image segmentation with parallel K means

30

, 2.562)

v) OpenMP: Cores vs Time - img2

Cores

16

32

(1 thread per core)

Time

3.907

3.327

2.715

2.243

1.740

1.648

Increasing Cores keeping Input Constant img#2

4.0

3.5 -
— 3.0
0
Q
£
'_

2.5 -

2.0

1.74)
__é3?
0 5 10 15 20 25 30

Image segmentation with parallel K means

No of cores (OMP)

, 1.648)

b) Scaling Input with processors/cores
(~0.3m to ~10m data points)

Image segmentation with parallel K means

i) MPI: Scaling input with processors

Scaling Input Size with No of Processors

Nodes Data Time
(c = 512*768 =~0.3 mil) 51.83 1
1 1c 2.65
2 2c 4.41 .
4 4c 6.41 € 24.66 1
8 8c 11.50
11.5 A
16 16¢C 24.66 6.41
3651 c = 327680 = ~0.3 million data points
32 32c 51.83 12 a 8 16 37

No of processors

Image segmentation with parallel K means

ii) OpenMP: Scaling input with cores

Scaling Input Size with No of Cores

Cores Data Time

54.75 A
(c =512*768 = 0.3 mil)
1 1c 4.17
2 2¢ 6.81 _ 37:227
4 4c 10.34 £
8 8c 16.29 16.29 -
16 16c 37.22 o]
4:17 : c = 327680 = ~0.3 million data points
32 32¢c 54.75 12 4 8 16 32

No of cores

Image segmentation with parallel K means

b) Comparing MPI with OpenMP
(leaving hardware specifics)

i) constant input size: cores/nodes vs time

Nodes/ Cores
log2

0

16

32

Inpsize = ~0.3 mil (512x640)

Time
MPI

2.502

2.190

1.555

1.472

1.565

1.652

Time
OMP

4.075

3.565

2.812

2.188

1.558

1.590

(*separate run)

Increasing Nodes/Cores keeping Input Constant

4.0 A Q75)

3.5 1

(2.502)

Time(s)

2.5 A

2.0 A

1.5 1

1555) (1472

—o— MPI
—&— OMP

log2 (No of processors/cores)

Image segmentation with parallel K means

N A
w

ii) MPIvs OpenMP

scaling input size (‘separate run)

Nodes/
Cores

(log2)

0

Data
(c=~0.3mil)

1c

2c

4c

8c

16¢c

32c

Time
MPI

2.642

4.413

6.413

11.499

24.655

51.832

Time
OMP

4170

6.807

10.340

16.291

37.216

54.751

Scaling Input Size (OMP vs MPI)

50 A

40 -

Time(s)

20 A

10 A

—o— MPI
OMP

(10734)
(6-807)

c = 327680 = ~0.3 million data points

1 2 3

log2 (No of cores/processors)

Image segmentation with parallel K means

4 5

.751)
.832)

c) A visualization of OpenMP output

Image segmentation with parallel K means

Expected K means (OMP)

-> The highest intensity cluster closely represents the faults along with some false positives

Image segmentation with parallel K means

6) INFERENCES

Image segmentation with parallel K means

1)

2)

3)

4)

Inferences

For my model, 8 nodes for MPI and 16 cores are ideal from performance
perspective

32 cores beats 32 nodes by a small margin ! (Hardware specifics not
known)

OpenMP is far easier to code than MPI (150 lines vs 600 lines of code).
Problem is fairly parallelizable and scalable (advisable under 32
nodes/cores). | needed close to 1 minute on python for 25 iterations on a

single image as compared to <2 seconds on MPIl and OpenMp with 16
cores/nodes.

Image segmentation with parallel K means

32

7) REFERENCES

Image segmentation with parallel K means

REFERENCES

1)

2)

3)

4)

5)

Algorithms Sequential & Parallel: A Unified Approach
(Dr. Russ Miller, Dr.Laurence Boxer)

https://ubccr.freshdesk.com/support/solutions/articles/1300002624
5-tutorials-and-training-documents

(Dr. Matthew Jones)

A Parallel K-Means Clustering Algorithm with MPI

(Jing Zhang, Gongqging Wu, Xuegang Hu, Shiying Li, Shuilong
Hao)

https://www.buffalo.edu/ccr/support/ccr-help.html
(UB CCR help)

Stackoverflow (for general MPI questions)

Image segmentation with parallel K means

QUESTIONS ?

Image segmentation with parallel K means

