
Working with
Prime Numbers
Kiran Radhakrishnan
CSE 708

Agenda

Introduction
Areas of Focus
What are we looking for

Summary

12/11/23 Working with Prime Numbers 2

Introduction

Prime number is a natural number greater than 1 that cannot be

expressed as the product of two natural numbers lesser than itself.

12/11/23 Working with Prime Numbers 3

Introduction
We will explore the application of the Sieve of Eratosthenes algorithm in finding prime
numbers between 1 and N

Our focus will be on analyzing the algorithm's performance when parallelized using the
Message Passing Interface (MPI)

12/11/23 PRESENTATION TITLE 4

I think prime numbers are like life. They are very
logical, but you could never work out the rules, even

if you spent all your time thinking about them

“
Mark Haddon”

12/11/23 Working with Prime Numbers 5

Areas of focus
Prime factorization

Finding all prime factors of numbers
from 0 to 4294967295

Improving the speed by running this
parallelly

12/11/23 Working with Prime Numbers 6

Sieve of Eratosthenes

Algorithm Overview

• The Sieve of Eratosthenes is an ancient algorithm for finding prime numbers within a
specified range.

• It systematically eliminates composite numbers, leaving behind the prime numbers.
• For example, to find primes up to 30, we mark multiples of each prime starting from 2.

12/11/23 Working with Prime Numbers 7

Pseudocode - Sequential
Algorithm Overview: O(n log log n)

1. Create a list of Boolean values, with indices from 2 to the desired limit, initially all set
to true.
2. Set a variable "p" to 2, the first prime number.
3. Repeat the following steps until p * p is less than or equal to the limit:

a. If the value at index p is true (i.e., p is not marked as composite): i. Mark all
multiples of p (excluding p itself) as composite by setting their values to false.

b. Find the next unmarked number greater than p, and set it as the new value of p.
This is the next prime number.
4. All the unmarked numbers that are still set to true in the list are prime numbers.

12/11/23 Working with Prime Numbers 8

Pseudocode – Parallel Part 1
Algorithm Overview:

1.Initialize MPI and process information.

2.Check for the command-line argument, 'n.’
3.Calculate local range and array size.

4.Allocate memory for the 'marked' array.
5.Initialize 'prime' on the master process.

12/11/23 Working with Prime Numbers 9

Pseudocode – Parallel Part 2
Algorithm Overview:

6. Implement the Sieve of Eratosthenes algorithm:
1. Mark multiples of the current 'prime' within the local range.
2. Update 'prime' by finding the next unmarked number.
3. Broadcast the new 'prime' to all processes.
4. Repeat until 'prime' squared exceeds 'n.’

7. Count local primes and reduce to get 'global_count.’

8. Measure execution time.
9. Print the number of processes, 'global_count,' and execution time.

10. Finalize MPI and exit.

12/11/23 Working with Prime Numbers 10

Performance graphs (n=500)

12/11/23 Working with Prime Numbers 11

Performance graphs(n= 429496729)

12/12/23 Working with Prime Numbers 12

N = 4294 (1 task per node)

12/12/23 PRESENTATION TITLE 13

Each node has 1 CPU

N = 4294 (2 tasks per node)

12/11/23 PRESENTATION TITLE 14

Comparing both graphs

12/11/23 PRESENTATION TITLE 15

N = 42949 (1 task per node)

12/12/23 PRESENTATION TITLE 16Each node has 1 CPU

N = 429496 (1 task per node)

12/12/23 PRESENTATION TITLE 17
Each node has 1 CPU

N = 4294967 (1 task per node)

12/12/23 PRESENTATION TITLE 18
Each node has 1 CPU

N = 4294967 (1 task per node)

12/12/23 PRESENTATION TITLE 19
Each node has 1 CPU

N = 42949672 (1 task per node)

12/12/23 PRESENTATION TITLE 20

Each node has 1 CPU

N = 42949672 (2 task per node)

12/11/23 PRESENTATION TITLE 21

Each node has 2 CPUS

N = 42949672 (4 task per node)

12/11/23 PRESENTATION TITLE 22

Each node has 4 CPUS

N = 42949672 (6 task per node)

12/11/23 PRESENTATION TITLE 23
Each node has 6 CPUS

N = 42949672 (8 task per node)

12/11/23 PRESENTATION TITLE 24

Each node has 8 CPUS

N = 42949672

12/11/23 PRESENTATION TITLE 25

N = 42949672

12/11/23 PRESENTATION TITLE 26

•Sequential Execution Time (for 1 process) = 0.135017 seconds

Summary

We were able to see that there is a small bottleneck after a certain

threshold in the number of processors. The benefit gained on time saved

decreases as we increased number of processors beyond a threshold.

12/11/23 Working with Prime Numbers 27

Thank you
Kiran Radhakrishnan
kiranrad@buffalo.edu

