
‘-

1

PARALLEL MATRIX MULTIPLICATION

Prepared by:

Malvika Sundaram Srinivasan

50290572

Guided by:

Professor Dr. Russ Miller

‘-

2

 Matrix Multiplication Definition and Use Case

 Process

 Sequential Approach

 Parallel Approach

 1D Decomposition

 Cannon’s algorithm

 Results

 Future work

 References

TABLE OF CONTENTS

‘-

3

o Given two matrices Matrix A of size mxn with elements aij and

Matrix B of size nxp with elements bjk)

o Matrix C is the product of A and B with size mxp

MATRIX MULTIPLICATION

Number of

Columns of A =

Number of Rows

of B

‘-

4

These are the final goals of the project

 Perform some image filters

 Perform convolution using General

Matrix Multiplication(GEMM) in

parallel

USE CASE

A

‘-

5

Using Open MPI to write matrix multiplication

The steps taken to run a program

1. Write the configurations and module loading as a shell script (SLURM)

2. The shell script also contains program to run

3. Run the script with sbatch command

4. Monitor the status using squeue or the jobs dashboard

5. Run the test for 3 times in each configuration and compute the average

PROCESS

‘-

6

MPI Program Structure

‘-

7

ITERATIVE ALGORITHM

Complexity:

• The algorithm takes Θ(nmp) time.

• If input are square matrices of size nxn,

the runtime is cubic i.e. Θ(n3)

SEQUENTIAL APPROACH

‘-

8

PARALLEL APPROACH – 1D Decomposition

‘-

9

PARALLEL APPROACH – Cannon’s Algorithm

 It is especially suitable for computers laid out in an N × N mesh.

 Storage requirements remain constant and are independent of the number of

processors

‘-

10

PARALLEL APPROACH – Cannon’s Algorithm

‘-

11

PARALLEL APPROACH – Cannon’s Algorithm

• Consider two n × n matrices A(i , j) and B(i , j) partitioned into p blocks.

• 0 ≤ i, j ≤ √p and the size (n ∕ √p)×(n ∕ √p) each.

• Process P(i , j) initially stores A(i , j) and B(i , j) , computes block C(i , j) of the result matrix.

• The initial step of the algorithm regards the alignment of the matrices

• Align the blocks of A and B in such a way that each process can independently start multiplying its local
submatrices.

• This is done by shifting all submatrices A(i , j) to the left (with wraparound) by i steps and all submatrices B(i , j)
up (with wraparound) by j steps.

• Perform local block multiplication.
• Each block of A moves one step left and each block of B moves one step up (again with wraparound)

• Perform next block multiplication, add to partial result, repeat until all blocks have been multiplied.

‘-

12

RESULTS - SEQUENTIAL

No of Processors Matrix Size Runtime (s)

1 100 x 100 3.39

1 1000 x 1000 11.21

1 2000 x 2000 83.24

1 3000 x 3000 372.78

1 4000 x 4000 854.39

1 5000 x 5000 2003.24

‘-

13

RESULTS - PARALLEL

Matrix size: 1000 x 1000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 5 8 10 20 25 50

R
u
n

n
in

g
 T

im
e
 (

s
)

No of Processors

Parallel

‘-

14

RESULTS - PARALLEL

Matrix size: 5000 x 5000

0

100

200

300

400

500

600

700

800

900

1000

2 4 5 8 10 20 25 50

R
u
n

n
in

g
 T

im
e
 (

s
)

No of Processors

Parallel

‘-

15

RESULTS - PARALLEL

Matrix size: 10000 x 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

2 4 5 8 10 20 25 50

R
u

n
n

in
g

 T
im

e
 (

s
)

No of Processors Parallel

‘-

16

RESULTS – PARALLEL VS SEQUENTIAL

No of Processors in parallel = 10

-2000

0

2000

4000

6000

8000

10000

12000

14000

1000 5000 10000

R
u

n
n

in
g

 T
im

e
 (

s
)

Matrix Dimensions

Parallel

‘-

17

RESULTS – SPEEDUP

Matrix size: 100 x 100

No of

Processors

Speedup

1 1

4 6.46

16 16.53

64 59.56
0

10

20

30

40

50

60

70

1 4 16 64

S
p

e
e

d
 u

p

Speed-up

‘-

18

RESULTS – SPEEDUP

Matrix size: 5000 x 5000

0

10

20

30

40

50

60

1 2 4 5 8 10 20 25 50

S
p
e

e
d

 u
p

No of Processors Parallel

‘-

19

RESULTS

1D Decomposition vs Cannon’s algorithm

No of

Processors

Matrix Size Runtime (s)

1 100 x 100 2.89

4 200 x 200 1.13

1 200 x 200 7.8142

4 1000 x 1000 2.1896

No of

Processors

Matrix Size Runtime (s)

1 100 x 100 3.39

4 200 x 200 1.62

1 200 x 200 8.21

4 1000 x 1000 2.341

‘-

20

o Understanding of Parallelization and writing MPI & SLURM script

o Increasing the processors doesn’t always reduce the running time

o At each stage doubling the data means quadrupling the number of processors

o Running times depend on how the nodes get allocated on CCR cluster

LEARNING

‘-

21

o Try to implement in OpenMP and compare the results with

Apache Spark

FUTURE WORK

‘-

22

 Parallel Multi Channel Convolution using General Matrix Multiplication : https://arxiv.org/pdf/1704.04428.pdf

 2D Image Convolution using Three Parallel Programming Models on the Xeon Phi :

https://arxiv.org/pdf/1711.09791.pdf

 https://makezine.com/2011/03/30/codebox-create-image-filters-with-matrix-multiplication/

 https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

 https://computing.llnl.gov/tutorials/mpi/#Abstract

 https://edoras.sdsu.edu/~mthomas/sp17.605/lectures/MPI-MatMatMult.pdf

REFERENCES

https://arxiv.org/pdf/1704.04428.pdf
https://arxiv.org/pdf/1711.09791.pdf
https://makezine.com/2011/03/30/codebox-create-image-filters-with-matrix-multiplication/
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://computing.llnl.gov/tutorials/mpi/#Abstract
https://edoras.sdsu.edu/~mthomas/sp17.605/lectures/MPI-MatMatMult.pdf

