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MATRIX MULTIPLICATION

o Given two matrices Matrix A of size mxn with elements a; and
Matrix B of size nxp with elements by )

o Matrix C is the product of A and B with size mxp

=]

fori=1, ..,mandj=1, ...; p.

Number of
Columns of A =
Number of Rows
of B
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USE CASE

These are the final goals of the project

» Perform some image filters

= Perform convolution using General 000
Matrix Multiplication(GEMM) in Original Image Image filtered 010
parallel (A with matrix K A

kernel image

Convolution becomes addition
of sub-matrices, each scaled by
one element of the kernel.
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PROCESS

Using Open MPI to write matrix multiplication

The steps taken to run a program
1. Write the configurations and module loading as a shell script (SLURM)
The shell script also contains program to run
Run the script with sbatch command
Monitor the status using squeue or the jobs dashboard
Run the test for 3 times in each configuration and compute the average

ok wb
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O
_ #include "mpi.h"
#include <stdio.h>
Declarations, prototypes, efc. #include <stdlib.h>
Program Beglns int main (int argc, char *argv[])
5 {
Serial code int numtasks, rank, dest, source, rc, count, tag=l;
char inmsg, outmsg='x';
E MPI Status Stat;
_ Parallel code begins MPI_Init(&arge, &argv) ;
MPI Comm size (MPI_COMM WORLD, &numtasks):
. MPI Comm rank (MPI_COMM WORLD, &rank) ;
if (rank == 0) {
. dest = 1;
source = 1;
rc = MPI_Send(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM WORLD) ;
rc = MPI Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM WORLD, &Stat);
}
else if (rank == 1) {
. dest = 0;
source = 0;
Parallel code ends rc = MPI Recv(&inmsg, 1, MPI CHAR, source, tag, MPI_COMM WORLD, &Stat);
rc = MPI_Send(&outmsg, 1, MPI CHAR, dest, tag, MPI_COMM WORLD) ;
- } Q
Serial code e AN
MPI Finalize() ; b
- } p— \\
Program Ends
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O
SEQUENTIAL APPROACH
ITERATIVE ALGORITHM « Input: matrices 4 and B
e Let C be a new matrix of the appropriate size
Complexity: e For i from 1 to n:
« The algorithm takes ©(nmp) time. e For j from 1 to p:
- If input are square matrices of size nxn, o PR
the runtime is cubic i.e. @(n3)
e For ik from 1 to m:
e Set sum <— sum + 4, * By,
e Set Cl-j < sum
e Return C
q\
7 . X
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PARALLEL APPROACH - 1D Decomposition

@ 1-D column wise decomposition

@ Each task:

o Utilizes subset of cols of A, B, C.
o Responsible for calculating its Cj
e Requires full copy of A

o Requires —A,’,—2 data from each of the other (P — 1) tasks.

o # Computations: O (N3/P)

@ Tmat—mat—1D = (P - 1) (tst + twa/lNTf)

A B C
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PARALLEL APPROACH - Cannon’s Algorithm

¢ It is especially suitable for computers laid out in an N x N mesh.
*» Storage requirements remain constant and are independent of the number of
processors

Algorithm overview

When multiplying two NxN matrices A and B, we need NxN processing nodes P arranged in a 2d grid. Initially Pi is
responsible for a;; and b ;.

row 1 of matrix a is circularly shifted by i elements to the left.
col j of matrix b is circularly shifted by j elements up.
Repeat n times:
p[i][J] multiplies its two entries and adds to running total.
circular shift each row of a 1 element left
circular shift each col of b 1 element up
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PARALLEL APPROACH - Cannon’s Algorithm

A(0,0) | A(0.1) | A(D.2) A0,0) | A(D.7) | A0,2) A0 1) | A(0,2) | Al0.0)

B(1.0)

B(2,1)

Al0.2)

A(0.0) | AD,1)

B(2.0)

B(0,1)

B(2,0)

B8{(0.1)

B(0.0)

Initial A, B A, B after skewing A, B after shifting

B(1.M)

k=1

B(0,0)

B(1.1)

B(1.0)

B{2.1)

A, B after shifting

C(1,2) = A(1,0) * B(0,2) + A(1,1)* B(1,2) + A(1,2) * B (2,2)

k=2
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PARALLEL APPROACH - Cannon’s Algorithm

Consider two n x n matrices A(i, j) and B(i, j) partitioned into p blocks.

OSi,j_<\/p and the size [n/\/pJX(n/\/p] each.

Process P(i, j) initially stores A(i, j) and B(i, j), computes block C(i, j) of the result matrix.
The initial step of the algorithm regards the alignment of the matrices

«  Align the blocks of A and B in such a way that each process can independently start multiplying its local
submatrices.

*  Thisis done by shifting all submatrices A(i, j) to the left (with wraparound) by i steps and all submatrices B(i, j)
up (with wraparound) by j steps.

*  Perform local block multiplication.

*  Each block of A moves one step left and each block of B moves one step up (again with wraparound) ,

Perform next block multiplication, add to partial result, repeat until all blocks have been multiplied. LY



University at Buffalo ’ N
Department of Computer Science 4
and Engineering p

School of Engineering and Applied Sciences ’

RESULTS - SEQUENTIAL

1 100 x 100 3.39

1 1000 x 1000 11.21
1 2000 x 2000 83.24
1 3000 x 3000 372.78
1 4000 x 4000 854.39

1 5000 x 5000 2003.24
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RESULTS - PARALLEL
Matrix size: 1000 x 1000
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RESULTS - PARALLEL
Matrix size: 5000 x 5000
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RESULTS - PARALLEL
Matrix size: 10000 x 10000
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RESULTS — PARALLEL VS SEQ

No of Processors in parallel = 10

=
0 O
o O
o O
o O

6000
4000
2000

Running Time (S)

/

1000 5000 10000
Matrix Dimensions

-2000

= Parallel



University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

RESULTS — SPEEDUP
Matrix size: 100 x 100
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RESULTS

1D Decomposition vs Cannon’s algorithm

No of
Processors

Matrix Size

100 x 100
200 x 200
200 x 200
1000 x 1000

Runtime (s) No of Matrix Size
Processors

3.39 1 100 x 100 2.89
1.62 4 200 x 200 1.13
8.21 1 200 x 200 7.8142

2.341 4 1000 x 1000 2.1896
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LEARNING

©)

©)

©)

©)

Understanding of Parallelization and writing MPI & SLURM script
Increasing the processors doesn’t always reduce the running time
At each stage doubling the data means quadrupling the number of processors

Running times depend on how the nodes get allocated on CCR cluster
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FUTURE WORK

o Try to implement in OpenMP and compare the results with
Apache Spark
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