Parallel Algorithms
K-means Clustering

Instructor: Dr. Russ Miller
Name: Mrunal Inge

UB Person Number: 50337040

% University at Buffalo The State University of New York

% University at Buffalo The state University of New York

OVERVIEW.:

Introduction to K-means

Sequential Algorithm

Parallel Approach

Sample Readings

Graphs

Conclusion

% University at Buffalo The State University of New York

Introduction:

» Clustering is the process of dividing the entire data into groups (also known as clusters) based
on the patterns in the data.

» The k-means clustering method is an unsupervised machine learning technique used to identify
clusters of data objects in a dataset.

» The procedure follows a simple and easy way to classify a given data set through a certain
number of clusters (assume k clusters) fixed a priori. The main idea is to define k centers,
one for each cluster.

» Conventional k-means requires only a few steps. The first step is to randomly select k centroids,
where k is equal to the number of clusters you choose. Centroids are data points representing
the center of a cluster.

% University at Buffalo The State University of New York

Sequential Algorithm

4+ Specify the number ‘k’ of the clusters to be assigned.
4+ Randomly initialize ‘k’ centroids.

4+ Assign each point to its nearest centroid by calculating euclidian
distance from the point to the centroid.

4+ Compute the new centroid by calculating the mean of all points
in the cluster.

4+ Repeat steps 3 and 4 till there is no change in the centroid
positions.

% University at Buffalo The State University of New York

10

@

Initial Data points

% University at Buffalo The State University of New York

Random Initialization

Final Clustering

% University at Buffalo The State University of New York

10

(e o)

After K-Means clustering

% University at Buffalo The State University of New York

Example:

“* Suppose we take a few data points [1,3,5,12,13,14}. Initially lets assume cluster centers to be 1 and !

“Clusters c1:[1,3] c2:[5,12,13,14]. We recalculate centroids by calculating mean of the cluster: c1=[1,3
c2=[5,12,13,14]= 11

» Now we calculate Euclidean distance of each cluster point w.r.t new centroids and update the cluster:
c1=[1,3,5] c2=[12,13,14]

» Again we calculate mean c¢1= mean(1,3,5) =3 c2= mean(12,13,14)= 13
¢ Again calculate euclidean distance and calculate points and rearrange clusters c1=[1,3,5] c2 =[12,13

»»No change in cluster. This will be our stopping point.

% University at Buffalo The State University of New York

Parallel Approach:

» Data is divided among each processor equally.
» The processor with rank O initializes k random centroids and broadcasts it to all other processors.
» Each processor then locally calculates distance of the point from each centroid and is divided into K clusters.

» Then the processor locally calculates the sum of each cluster and returns the sum and length of each cluster to the
processor with rank 0.

» Then, Processor with rank 0O, receives the sum and length of the clusters and calculate the new clusters centroids, :
broadcast it to all the processors.

» Above procedure of clustering continues for n iterations.

.% University at Buffalo The State University of New York

eadings:

Below readings show the new cluster centers calculated for different number of data points with increasing
number of processors.

[mrunalna@vortex2:~]$./kmeans—-parallel.sh

Anaconda Python 2.7 version 2019.10 has been loaded.

Intel-MPI is in your path. This is adequate for compiling and running most codes. Source the
/util/academic/intel/17.0/compilers_and_libraries_2017/linux/mpi/intel64/bin/mpivars.sh file for more features.
[[8.02073608 1.04728374]

[0.97921048 0.94142644]

[5.02002949 5.05160844]]

0.0372860431671

[mrunalna@vortex2:~]$./kmeans—-parallel.sh

Anaconda Python 2.7 version 2019.10 has been loaded.

Intel-MPI is in your path. This is adequate for compiling and running most codes. Source the
/util/academic/intel/17.0/compilers_and_libraries_2017/linux/mpi/intel64/bin/mpivars.sh file for more features.
[[1.00343614 0.93228404]

[4.96220196 4.95370008]

[7.90394033 0.9955709]]

0.0279741287231

[mrunalna@vortex2:~]$./kmeans-parallel.sh

Anaconda Python 2.7 version 2019.10 has been loaded.

Intel-MPI is in your path. This is adequate for compiling and running most codes. Source the
/util/academic/intel/17.0/compilers_and_libraries_2017/linux/mpi/intel64/bin/mpivars.sh file for more features.
[[1.01064311 0.92602857]

[4.88073738 5.01299327]

[7.97499368 1.03243626]]

0.0527241230011

[mrunalna@vortex2:~]$

% University at Buffalo The State University of New York

Sample Readings of Data Points and Number of Processors

Number of 2 4 8 processors |16 32 64
Data Points processors processors processors |processors |processors

0.03410450617 0.0239983 0.0317015250:0.128037254 0.331446768 2.418035666

0.14970914 0.1061520179 0.0765351804 0.0775833129¢0.0671420097<4.067548831

150000 1.318409486 0.9297121763 0.7582879464 0.6338289976 0.7354993025 3.061531308

1500000 14.74032735 10.13659803 7.62879169 6.509320339 6.537833664 13.43311969

15000000 152.7570831 103.5258799 81.64824339 70.10960893 69.4403375 132.9132652

% University at Buffalo The State University of New York

Amdahl's (Time v/s Processors) 1500000 points

Time

(=% ~J (%3] ‘0
L 1 i 1

A
.

W RSN
f f

tJ
1

Processors

% University at Buffalo The State University of New York

Gustafon's (Time v/s Processors)

110
10.5
10.0
9.51
9.0
8.51
8.0
7.5
704
6.5
6.0
5.51
50+
454
404
3.5
304
2.5
204
1.54
10
0.5
00

Time

(]
(=]
L
(3]

% University at Buffalo The State University of New York

Conclusion:
» We observe significant speedup unto 32 processors.
« Cost of communication affects the speedup significantly when the number of processors exceeds 64.

* The significant change in the speedup is observed for a large number of data and more number of clusters

% University at Buffalo The State University of New York

References:

* https://mpidpy.readthedocs.io/en/stable/tutorial.html

o https://arxiv.org/pdf/1608.06347.pdf

https://mpi4py.readthedocs.io/en/stable/tutorial.html
https://arxiv.org/pdf/1608.06347.pdf

% University at Buffalo The State University of New York

Thank You!

