
CSE 708: SEMINAR ON
PROGRAMMING
MASSIVELY PARALLEL
SYSTEMS
Implementation of Merge Sort using k-
way Merge Sort

Neha Mishra, 50416280

Agenda
Ø Introduction to Merge Sort

Ø Sequential Approach

Ø Parallel Approach- Two-way Merge Sort

Ø Parallel Approach- Multi-way or k-way Merge Sort

Ø Challenges and Learnings

Ø References

2

Introduction to Merge Sort
Merge sort is a sorting algorithm which is
based on the divide and conquer paradigm.
The array A of N elements is divided into two
almost equal halves. These halves are then
sorted recursively and sorted parts are
merged into a single sorted sequence.

Time complexity: O(nlogn)

3

Pseudocode for Merge Sort

4

Reference: Sequential and Parallel Algorithms and Data Structures: The Basic Toolbox by Peter Sanders, Kurt Mehlhorn,
Martin Dietzfelbinger and Roman Dementiev.

Two Way Merge Sort
• Merge sort’s dependency on divide and conquer paradigm makes it an

excellent candidate for parallelizing the Merge Sort. So, how we use
multi-processors for this.

5
Reference: Sequential and Parallel Algorithms and Data Structures: The Basic Toolbox by Peter Sanders, Kurt Mehlhorn,
Martin Dietzfelbinger and Roman Dementiev.

But is it an improvement?
• Biggest hurdle? Even with giving as many processors as

needed, the algorithm would need Ω(n) as the final
sequential merge would need comparison of n elements
which acts as the biggest blocker.

• Furthermore, the parallel merge this way would be needing
O(n) extra space. Our system wouldn’t scale well, if the data
was to stay on different processors.

6

Parallel Two-way Merge Sort
Ø In order to implement a parallel merge sort, we need to parallelize the merging.

Ø How do we do that?

ØLet’s assume our two sorted sequences are: a and b

ØSplit the two sequences a and b into p pieces: a1..ap and b1..bp

ØThis means, merge(a, b)-> merge(a1, b1), merge(a2, b2)… and so on.

ØThe p pieces, with corresponding a and b subarray are running in parallel by having one PE

each.

ØIn order for this to work, ai and bi must not be greater the ai+1 and bi+1.. This would mean
that PE i first checks where does ai end in a and bi end b and then it merges ai and bi.

7

Parallel Merge Sort
• This step where we are finding the cut in the corresponding a and b subarrays, to find the

smallest k elements can be done easily in O(k) but our goal is to find it in O(log|a| +
log|b|). Here, k can be defined as (n1+n2)/2 where n1 and n2 is the size of the subarrays
n1 and n2.

• This is defined as twoSequenceSelect(a, b, k) as defined by Sanders, Mehlorns and
Dietzfelbinger. The main idea is to maintain sorted subrange a[la….ra] and b[lb….rb] with
these properties.

- The elements a[1…la] and b[1….lb] belong to the k smallest element

- The k smallest elements are contained in a[1….ra] and b[1….rb] .

8

For k=4;

9

Reference: Sequential and Parallel Algorithms and Data Structures: The Basic Toolbox by Peter Sanders,
Kurt Mehlhorn, Martin Dietzfelbinger and Roman Dementiev.

twoSequenceSelect(a, b, k):
For the ranges, [la….ra] and [lb….rb],

10

Issues with Two-Way Merge Sort
Although we did achieve the goal of keeping the data divided
between two processors and not letting one processor overload
itself, we still had

Our number of processors will have to fixed to 2 which reduces the
whole effort as useless as we wouldn’t be able to scale it.

11

Multiple Failed Ways to do
• Use of heap: sequential sorting

• Use of tournament sort: doesn’t effectively use the power of
parallel processing

12

Parallel Multi-way or k-way
Merge Sort
• To implement parallel p-way mergesort, we first split the input array s into p equally sized pieces,
possibly trying to allocate PEs on the same NUMA node as the RAM storing that piece of data. Each
PE then locally sorts the data allocated to it. This takes time O(n log n).
• For parallel p-way merging, we generalize the splitting idea used in parallel bi- nary (two-way)
mergesort. Rather than splitting two sequences into p pieces each, we now split p sequences into p
pieces each.

13Reference: Sequential and Parallel Algorithms and Data Structures: The Basic Toolbox by Peter Sanders, Kurt Mehlhorn, Martin
Dietzfelbinger and Roman Dementiev.

Parallel Multiway Merge Sort

14

Reference: Sequential and Parallel Algorithms and Data Structures: The Basic Toolbox by Peter Sanders,
Kurt Mehlhorn, Martin Dietzfelbinger and Roman Dementiev.

Parallel Multiway Merge Sort-
Pictorial Depiction

15

Parallel Multiway Merge Sort-
Pictorial Depiction- continued

16

Trend for 100,000 data

17

No. of
Processors

Time (in s)

2 0.1057

4 0.0548

8 0.0318

16 0.0176

32 0.0092

64 0.0112

Trend for 200,000 data

18

No. of Processors Time

2 0.3963

4 0.2194

8 0.1355

16 0.0767

32 0.0372

64 0.0454

Trend for 1,000,000 data

19

No. of Processors Time

2 9.7190

4 5.1225

8 2.1299

16 1.6731
32 0.6783

64 1.1193

Trend for 2,000,000 data

20

No. of Processors Time

2 24.3587

4 13.3234

8 7.4507

16 3.9068

32 1.6622

64 2.9267

Trend for 1,000,000,000 data

21

No. of Processors Time

2 650.1127

4 383.4366

8 270.4521

16 139.1237

32 92.85

64 108.9378

Challenges and Learnings
• Learnings: MPI, CCR, SLURM, SRUN, Multiple kinds of sorting,

Distributed Sorting, etc.

• Understanding of how the decline of performance with the
increase of processors.

• Increase in data up and beyond 1B resulted in slow run time
algorithm.

22

Things that improved test results
• Initially, the code randomly generated random numbers which

was then used by the processors to further sort. The change
was made in two parts. One code generated random numbers
and saved it in a file. Our main code of parallel k way merge sort
picked these number for solving our sorting problem.

• Removal of unnecessary MPI Scatter and MPI Gather which
wasn’t relevant.

23

References
• Sequential and Parallel Algorithms and Data Structures: The

Basic Toolbox by Roman Dementiev, Martin
Dietzfelbinger, Peter Sanders, Kurt Mehlhorn

• https://www.cse.wustl.edu/~angelee/archive/cse341/fall14/hando
uts/lecture06.pdf

• Image referenced from: Zaric Zola Parallel and Distributed
Processing Class Presentation.

24

https://www.cse.wustl.edu/~angelee/archive/cse341/fall14/handouts/lecture06.pdf

