Solving 0-1 KNAPSACK
PROBLEM USING CUDA
Platform

CSE 708 Seminar: Programming Massively
Parallel Systems

Instructor: Professor Russ Miller

Author: Pushkar Pandey

% University at Buffalo The state University of New York

--

CONTENT:

Introduction to 0-1 Knapsack Problem
0-1 Knapsack Problem Example
Sequential Implementation

Parallel Implementation: MPI

CUDA Implementation

Output Analysis and Graphs

MPI vs Cuda

Conclusion

References

% University at Buffalo The state University of New York

Introduction to 0-1 Knapsack Problem

e Problem of combinatorial optimization

e A set of items with a weight and a value
given a knapsack with a maximum weight
it can carry

Find which items to take to get the best value
but not exceed the knapsack capacity

% University at Buffalo The state University of New York

Example of Knapsack Problem

0-1 Knapsack Problem

value[] = {60, 100, 120};
weight[] = {10, 20, 30};
W = 50:

Solution: 220

Weight = 10; Value = 60;

Weight = 20; Value = 100;

Weight = 30; Value = 120;

Weight = (20+10); Value = (100+60);
Weight = (30+10); Value = (120+60);
Weight = (30+20); Value = (120+100);
Weight = (30+20+10) > 50

% University at Buffalo The state University of New York

Sequential Implementation

1 // Input:

2 // Values (stored in array v)

3 // Weights (stored in array w)

4 // Number of distinct items (n)

5 // Knapsack capacity (W)

6 // NOTE: The array "v" and array "w" are assumed to store all relevant values starting at index 1.
7

8 array m[0..n, 0..W];

9 for j from 0 to W do:
10 m[0, j] =0
11 for i from 1 to n do:
12 m[fi, 0] =0
13
14 for i from 1 to n do:
15 for j from 0 to W do:
16 if w[i] > j then:
17 m(i, j] := m[i-1, J]
18 else:
19 m[i, j] := max(m[i-1, j], m[i-1, Jj-w[i]] + Vv[i])

% University at Buffalo The state University of New York

Sequential Implementation Example

w
I v |w O 1 2 3 4 5 6
11514 I 0
2 14| 3 1
33| 2 2
41211 3
Capacity=6 4

% University at Buffalo The state University of New York

MPI Parallel Implementation

PiL P2 P3 P1 P2 P3

We do column parallelization

e Compute the maximum value achievable using the
item of the row

e Compute the value without the new item. This value is
the value just above in the matrix or O if it is the first
item.

e Save in the cell the maximum value achievable using
or not the new item

e Send to all the processors that could need it in future
iteration the new value.

% University at Buffalo The state University of New York

CUDA Parallel Implementation

Anti-Diagonal Approach Derinams 1 2 &
e We lterating through the dynamic programming N s
scoring grid in an anti diagonal process. \ ~ L7
e Each dotted line represents an iteration that is
processed in parallel.

Time

% University at Buffalo The state University of New York

CUDA Parallel Implementation

e As a cell being filled satisfies the dependencies of
future cells, it allows the elements of a diagonal
iteration of the current grid, to be calculated and filled
in parallel.

e An example of a cell in the current grid only having a4

data dependencies to the previous iterations.

% University at Buffalo The state University of New York

Output Analysis for W(100000/10000)

Time(s) vs. No of Threads
No of Threads |Time(s) 005

16 0.04461
32 0.03264
64 0.02343
128 0.01838
256 0.01375
512 0.01108 o orTsass

10

% University at Buffalo The state University of New York

Output Analysis for W(500000/10000

Time(s) vs. No of Threads
No of Threads |Time(s) o1

16 0.5073
32 0.4654 o
64 0.4481 £)
128 0.3648 |
256 0.2604 00 — — L L L
512 0.2164 N—

11

% University at Buffalo The State University of New York

MPI vs Cuda for W(500000/10000)

No of Threads/Nodes

16 0.5073 101.475
32 0.4654 64.479
64 0.4481 43.489

12

% University at Buffalo The state University of New York

Conclusion

* As the thread count increases per block the code executing becomes faster.

* (Cuda is a shared memory paradigm, which makes the algorithm easy and

faster. MPI is a distributed memory and all synchronization and communication
are explicit.

13

% University at Buffalo The state University of New York

References:

e https://en.wikipedia.orag/wiki/Knapsack problem

e https://developer.nvidia.com/cuda-toolkit

e https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html

e https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

14

https://en.wikipedia.org/wiki/Knapsack_problem
https://developer.nvidia.com/cuda-toolkit
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.geeksforgeeks.org/0-1-knapsack-problem-dp-10/

% University at Buffalo The state University of New York

Thanks You

15

