
KMP PARALLEL
ALGORITHM FOR
PATTERN MATCHING
(OPEN MP)
UBIT: rbammidi

Professor: Dr. Russ Miller

Content
• Need of pattern matching

• KMP Algorithm

• Parallel KMP

• Failed parallelization attempts

• Debugging with slurm

• Results

2

Need of pattern matching
• Pattern matching is used to determine whether source files of high-level languages are syntactically

correct.

• Many fingerprint recognition methods are in use to perform fingerprint matching out of which pattern
matching approaches is widely used.

• Pattern matching enables users to find the locations of particular DNA subsequences in a database or
DNA sequence.

• Searching for word in the large log files dump

• Validating the information received from the client before writing into DB.

3

Knuth-Morris-Pratt (KMP)
The Knuth-Morris-Pratt (KMP) algorithm is an algorithm that is used to search for
a pattern in a given text in O(m + n) time (where m and n are the lengths of
pattern and text).

4

KMP Algorithm ~ 2 Step Process
Step 1: Pre-process the Pattern

step 1.1: Build the LPS table from the pattern

Step 2: Iterate through the Text and Pattern and check for the existence of the pattern in
the text

5

Components and Terminology of KMP Algorithm
In the KMP algorithm, we have two terms, proper prefix and suffix

A proper prefix of the pattern will be a subset of the pattern using only the
beginning portion (the first index), or the first few indices of the pattern except the
last character

Pattern : a b c d a b c

• a

• a b

• a b c

• a b c d

• a b c d a b c
6

Components and Terminology of KMP Algorithm
A proper suffix of any pattern would be a subset of the pattern with elements
taken only from the right end of the pattern as in, any number of elements,
starting from the last character. Taking the first character of the string is not
allowed

Pattern : a b c d a b c

• c

• b c

• a b c

• d a b c

7

Longest prefix that is also a suffix (LPS)

8

0 1 0 1 2 2 2 3 4 5 3

A A B A A A A B A A B

LPS[]

LPS[i] represents longest prefix that is also a suffix till i

Takes O(m) time to generate the LPS array

9

A A A B A A B A A A A A C A A B B A A A B A A A A B A A B A A A A B A

0 1 0 1 2 2 2 3 4 5 3

A A B A A A A B A A B

Text

Pattern

KMP Pattern Matching

10

A A A B A A B A A A A A C A A B B A A A B A A A A B A A B A A A A B A

0 1 0 1 2 2 2 3 4 5 3

A A B A A A A B A A B

Text

Pattern

KMP Pattern Matching

11

A A A B A A B A A A A A C A A B B A A A B A A A A B A A B A A A A B A

0 1 0 1 2 2 2 3 4 5 3

A A B A A A A B A A B

Text

Pattern

KMP Pattern Matching

12

A A A B A A B A A A A A C A A B B A A A B A A A A B A A B A A A A B A

A A B A A A A B A A B

Text

Pattern

KMP Pattern Matching

Parallel KMP Algorithm

13

Components and Terminology of Parallel KMP
Algorithm
• Shared LLPM Table: llp[𝑖] stores the length of the longest pattern that matches with the text till len(string-

1) in the ith thread.

• Cumulative LLPM Table: It holds the cumulative LLPM table information from the processor 0 to processor
𝑖

• Non-cumulative LLPM Table: It holds the non-cumulative LLPM table information, which means it doesn’t
contain the LLPM information from processor 0 (partial LLPM table)

14

15

T 0
D A A B

T 1
BCAD

Pattern: D A A B B C A D

LLPM Table usage

4 0

Text: D A A B B C A D

Pattern: D A A B B C A D

LLPM Table

Initial Attempt

16

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6

Drawbacks:
Every 𝑖!" processor has to wait until it receives the parallel KMP table from [0, 𝑖 −1] processors

Parallel KMP Steps (MPI)
ØSplit the given text equally of size (#

$
) 𝑒𝑎𝑐ℎ to all the processors ~ Broadcasting

ØEach processor executes sequential KMP independently on the given text & pattern

ØEvery processor checks if the cumulative KMP table is available to receive from its predecessor

ØIf the cumulative KMP table is not available in the buffer, it receives the non-cumulative KMP table from its
preceding processor.

ØThis process continues till it finds the pattern in the given text.

17

Parallel KMP Steps (Open MP)
ØSplit the given text equally of size (#

$
) 𝑒𝑎𝑐ℎ to all the threads

ØEach thread executes sequential KMP independently on the given text & pattern

ØEvery thread checks for the length of largest pattern (say LLP) match at the last index from its predecessor.

Ø Every thread recompute the LLP in its local scope based on the previous thread LLP.

ØThis process continues till it finds the pattern in the given text.

18

19

T 0 T 1 T 2 T 3 T 4 T 5 T 6

Parallel KMP Visualization Using OPEN MP
Step1: Process Text & Pattern
Step 2: Write into shared lps table
Step 3: Read from shared lps table, repeat step 1.

0 1 2 3 4 5 6

20

Thread

Profiling a typical thread

Read cumulative LLP
 from its predecessor

Read non-cumulative LLP
from its predecessor

Write non-cumulative LLP
for its successor

Write cumulative LLP
for its successor

0 1 2 3 4 5 6

21

T 1
A A B C

T 2
A C A A

T 3
D A A B

T 4
BCAD

Pattern: D A A B

Pattern existence in a single processor

22

T 1
A A B C

T 2
A C A A

T 3
D A A B

T 4
BCAD

Pattern: D A A B B C A D

Pattern existence in two processors

23

T 1
A A B C

T 2
A C A A

T 3
D A A B

T 4
BCAD

Pattern: A C A A D A A B B C A D

Pattern existence in three processors

0 4 0 0

0 4 8 0

0 4 8 12

Instance 1

Instance 2

Instance 3

24

T 1
A A B C

T 2
A C A A

T 3
D A A B

T 4
BCAD

Pattern: C A C A A D A A B B C A D

Pattern existence in four processors

1 0 0 0

1 5 0 0

1 5 9 0

1 5 9 13

Instance 1

Instance 2

Instance 3

Instance 4

Input Size Vs Time In Secs for Sequential KMP

25

Input Len Time in secs

Threads Vs Run Time Text Size=1e6 & P=33 (Open MP)

26

Processors Secs

Threads Vs Run Time Text Size=1e12 & P=33 (Open MP)

27

Processors Secs

TCP/IP Vs IB|OPA Network Band Performance ?

28

It doesn’t make any difference

Speed Up Vs Processors

29

Input text size 1e12, 𝑇%&' = 3.14 secs

SpeedUp =
(!"#

($%&%''"'
Threads 𝑇!"#"$$%$ Speed

Up
Data Per Thread

1 3.14 1 1e12

2 2.16 1.45 500000000000

4 0.12 26.16 250000000000

8 0.70 4.48 125000000000

16 2.69 1.16 62500000000

32 5.09 0.61 31250000000

64 7.36 0.42 15625000000

Slurm Script

30

The slurm job script is designed to utilize the
entire 1 node with 64 cores in ub-hpc cluster,
where each thread would take one core to
perform the computations.

References
• https://ieeexplore.ieee.org/document/6618720

• https://cmps-people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html

• https://buffalo.app.box.com/s/nqj3neyt2w1dtb3gix6zxqx5gcc9x3
0n

• http://koreascience.or.kr/article/JAKO201814955686557.page

• https://ieeexplore.ieee.org/document/8599534

31

https://ieeexplore.ieee.org/document/6618720
https://cmps-people.ok.ubc.ca/ylucet/DS/KnuthMorrisPratt.html
https://buffalo.app.box.com/s/nqj3neyt2w1dtb3gix6zxqx5gcc9x30n
https://buffalo.app.box.com/s/nqj3neyt2w1dtb3gix6zxqx5gcc9x30n
http://koreascience.or.kr/article/JAKO201814955686557.page
https://ieeexplore.ieee.org/document/8599534

Thank You

Questions?

32

