
LONGEST COMMON

SUBSEQUENCE
Parallelizing LCS using OpenMP

Name : Saema Nadim

Person# 50469138

Instructor : Dr. Russ Miller

CONTENT

 What is LCS?

 It’s Applications

 Need for parallelization

 LCS Calculation – (Dynamic Approach)

 Sequential Approach

 Parallel Approach - OpenMP

 Results and Graphs (Sequential, Parallel,

Comparison)

 Observations

 References

What is LCS?

• As the name suggests, this algorithm is used to

find Longest Common Subsequence among

two or more strings.

• It uses a dynamic programming approach to do

so. The solution for each comparison depends on

the solution of previous comparisons.

• It is an NP-Hard problem if arbitrary number of

sequences are provided as input, but for constant

number of sequences it can be solved in

polynomial time.

3

Example -

Consider two strings of length 10 –

1. String1: QTSRTTTSTR

2. String2: SQSTTRQSTT

Their Longest Common Subsequence is

highlighted with red. It will be QSTTST.

It’s Applications
It has wide amount of real world applications:

1. Bioinformatics

- it is used for finding similar regions of two nucleic acid sequences – like DNA

- it helps analyse protein sequences to understand their structural and functional properties.

2. Text Comparison

- it is essential in plagiarism detection software, helping maintain Academic Integrity.

- it is used in version control systems like Git to track changes in code and text files.

3. Natural Language Processing (NLP):

- It finds common text segments in multiple documents, facilitating text summarization.

- It is also used in spell checkers.

It is also used in multiple other fields like Pattern Recognition, Reinforcement Learning, Data compression, Data

mining, Image comparison etc. Hence, it’s a very valuable tool.

4

Need for parallelization

• Reduced computation time: The computation of the LCS is a computationally expensive

task, especially for long input sequences. Parallelizing the computation can help reduce the

computation time by distributing the workload across multiple processors or computing nodes.

• Better resource utilization: Parallelization allows better utilization of available computing

resources, such as multi-core processors or clusters.

• Scalability: As the size of the input increases, parallelization allows us to handle larger inputs

while still achieving reasonable computation times.

• Improved efficiency: Parallel algorithms can reduce the time to solution, and allow

researchers to perform larger or more complex analyses in the same amount of time.

5

How to calculate LCS – explained (DP Approach)

• The value of each element is calculated using following formula-

𝑑𝑝 𝑖 𝑗 =

0 𝑖𝑓 𝑖 = 0 𝑜𝑟 𝑗 = 0
𝑑𝑝[𝑖 − 1][𝑗 − 1] + 1 𝑖𝑓 𝑆𝑡𝑟𝑖𝑛𝑔1[𝑖] = 𝑆𝑡𝑟𝑖𝑛𝑔2[𝑗]

max 𝑑𝑝 𝑖 − 1][𝑗 , 𝑑𝑝 𝑖][𝑗 − 1 𝑖𝑓 𝑆𝑡𝑟𝑖𝑛𝑔1 𝑖 ≠ 𝑆𝑡𝑟𝑖𝑛𝑔2[𝑗]

It can be seen that each element’s value depends on its previous diagonals.

• The last bottom right value of the calculated matrix tells us the length of

LCS, and the matrix can be traced back from the last element to find the

required subsequence.

6

Sequential Approach

7
Time

Parallel Approach

• Parallel Approach is similar to previous sequential

approach such that each element of every diagonal is

iterated in the direction of arrow.

• Each diagonal is divided into all available threads using a

simple formula.

• In this figure, 4 threads are used. Each color represents

calculation by a single thread.

• Since threads use shared memory, a value calculated by

one thread is visible to all threads, we don’t need to use

any send and receive functions in OpenMP

8

OpenMP
• OpenMP stands for Open Multi processing and it is completely different from

MPI.

• In an HPC environment, MPI uses multiple nodes (distributed-memory) in the

cluster and it allows processes on different nodes to communicate efficiently.

• OpenMP is well-suited for tasks that can be parallelized within a single node

(shared-memory) with multiple CPU cores, where threads can easily

communicate.

• It’s used for multi threaded parallelism.

9

Output Screen

10

Did not use ‘private’: Correct Output:

Output Screen

11

• Input length: 1,10,000

• Number of threads used: 16

• Parallel Algo time: 46 seconds (< 1 min)

• Sequential Algo time: 732 seconds (12.2 minutes)

Results for Sequential Approach
Size of Input Time (in s)

10 0.000003

50 0.00005

100 0.00015

1000 0.016

10000 0.888

20000 3.7

30000 8.34

40000 17.2

50000 40

60000 68

70000 102.5

80000 174

90000 263

100000 310 12

Results for Parallel Approach (small input size)

13

Number

of

Threads

Time (in s)

for Input

size 10

Time (in s)

for Input

size 100

Time (in s)

for Input

size 1000

2 0.0004 0.001 0.023

4 0.0009 0.0024 0.021

8 0.004 0.004 0.018

16 0.012 0.012 0.097

32 0.03 0.05 0.148

64 0.205 0.197 0.327

128 0.238 0.147 0.591

Results for Parallel Approach (large input size)

14

No. of

Thread

s

Time (in s)

for Input

size 10000

Time (in s)

for Input

size 20000

Time (in s)

for Input

size 30000

Time (in s)

for Input

size 40000

Time (in s)

for Input

size 50000

Time (in s)

for Input

size 60000

Time (in s)

for Input

size 70000

Time (in s)

for Input

size 80000

Time (in s)

for Input

size 90000

Time (in s)

for Input

size100000

2 0.827 3 6.8 10.17 31.34 52 72.5 105 121 162

4 0.565 2.28 8 11.84 22 30.65 43.2 62.3 74.03 89

8 0.4 1.2 3 4.2 7.2 12.7 21 32 39 44

16 0.4 1 2.2 4 5.5 9 12.25 19.2 20 24

32 0.754 1.651 3.982 7.331 12 16.18 20.467 31.41 30.8 34.5

64 2.126 3.9 8.4 10 18.6 21.4 24.6 36.7 39.5 42.6

128 3.15 8.345 12.28 19 13 34.8 61 76 91 61.65

256 6.3 15 27 30 51.7 67 69.7 147 90 102.6

Results for Parallel Approach (large input size)
(16 core node)

15

Results for Parallel Approach (large input size)
(64 core node)

16

Graph where input to threads ratio is constant (1000)

17

Speedup Graph

• Speedup is the execution time of a

sequential program divided by the

execution time of a parallel program

that computes the same result.

• Speedup = Tsequential / Tparallel

18

Comparison of MPI Speedup and OpenMP Speedup

19

Observations

• The sequential algorithm graph shows that as input increases, the time taken by sequential

algorithm increases.

• It can be seen that for less input sizes, the graph pattern of parallel algorithm is similar to the

sequential algorithm graph. The time increases in spite of increasing the number of threads.

• For large input sizes as the number of threads increase, the time taken by OpenMP algorithm

decreases but till a certain point of time.

• After a point, time starts increasing again as the threads increase due to communication

overhead between them.

• For larger inputs, the OpenMP implementation can be up to 12 times faster than the

sequential algorithm.

20

Max threads used: 608

21

Time taken: 3.7 min Time taken: around 15 min

References

• https://princetonuniversity.github.io/PUbootcamp/sessions/parallel-

programming/Intro_PP_bootcamp_2018.pdf

• https://buffalo.app.box.com/s/8ynupd5rg3cl91dzbjovsxw92s4e1olu

• https://learn.microsoft.com/en-us/cpp/parallel/openmp/reference/openmp-functions?view=msvc-170

• http://personales.upv.es/thinkmind/dl/conferences/infocomp/infocomp_2011/infocomp_2011_7_20_10120.pdf

• https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458724/#CR14

• https://www.researchgate.net/publication/332352052_An_OpenMP-

based_tool_for_finding_longest_common_subsequence_in_bioinformatics

22

http://personales.upv.es/thinkmind/dl/conferences/infocomp/infocomp_2011/infocomp_2011_7_20_10120.pdf
http://personales.upv.es/thinkmind/dl/conferences/infocomp/infocomp_2011/infocomp_2011_7_20_10120.pdf
http://personales.upv.es/thinkmind/dl/conferences/infocomp/infocomp_2011/infocomp_2011_7_20_10120.pdf
http://personales.upv.es/thinkmind/dl/conferences/infocomp/infocomp_2011/infocomp_2011_7_20_10120.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458724/#CR14
https://www.researchgate.net/publication/332352052_An_OpenMP-based_tool_for_finding_longest_common_subsequence_in_bioinformatics

Thank You

23

