Parallel Bitonic Sort
Implementation

CSE 702 Programming Massively Parallel Systems
Course Instructor — Dr. Russ Miller
Prepared by — Sajid Khan(UB person no: 50248743)

Agenda

* Introduction to Bitonic Sort
* MPI Implementation

* Example Comparison

* Results and Analysis

e Challenges

* Qutcome

e References

What is Bitonic Sort?

* To understand Bitonic Sort, we must first understand what is Bitonic
Sequence and how to make a given sequence Bitonic.

* A sequence is called Bitonic if it is first increasing, then decreasing. In
other words, an array arr[0..n-i] is Bitonic if there exists an index i
where 0<=i<=n-1 such that

x0<=x1..... <= xi and xi >= xi+1..... >= xn-1

* A sequence, sorted in increasing order is considered Bitonic with the
decreasing part as empty.

How to make a sequence Bitonic?

— (N < W00 O M~

1

aNAEANA'

N ~— M < O WM~

0

N < AN «— O W M~

1

/TN

N <M~ WOLWwN

DD»>>

M T O MW OAN

)
/7N XN

MM~ <N O LW~

1
ANATEANA

N M~<F 000 O N «— W

(Logn)”*2 comparisons

Time complexity

MPI Implementation

i R | | Y W[
]]] N 1| Y
| | A 8 | e Y
] D100 [|0]]0=
i N e]
i] Dmmu\\\
[o 1] e
i 00 |0 [0
N e wer

Whom to compare with?

Step No. Processor No.
000 001 010 011 100 101 110 111
1 L H H L L H H L

()
=
I_:Z|
an
aw
aw
:IZ|
=
=

How to find the right pair?

for (i = 0; i <dimensions; i++) { // dimensions = log(n), iterates on stages
for (j =1i; j>=0; j--) { // combinations in each stage

if (((process_rank >> (i + 1)) % 2 == 0 && (process_rank >>j) % 2 ==0)
|| ((process_rank >> (i + 1)) % 2 != 0 && (process_rank >>j) % 2 1= 0)) {

ComparelLow(j);

} else {
CompareHigh(j);

Example comparison

* Consider the first comparison, where process rank in binary is 000
* It finds the partner using bitwise EXOR operation.
partner’s rank = process_rank " (1<<j)

 Where j is comparison bit varies from [0,logn) and n is the number of
pProcessors.

What happens in a Comparison?

sends{2,3,6,7}>min
max=7 Y
h 4
3, 62,7 4518
2,3,6,7 Sorted 1,.4.5,8 Sorted
A~
min=1
e sends {1,4,5}<max=7 ——
Collects all the Collects all the

elements and keeps

elements and keeps .
the highest half

the lowest half Nighest
12:*4 2,0,/,0

Few Results — 4 million keys

‘Nodes | Timeinsec A—

2 0.753486

4 0.558978 o

8 0.484986 .

16 0.383336

32 0.232034

64 0.156750 o e @ w0 e

Number of nodes

128 0.102977

10,000 keys

2 0.00272 0.004

0.0035

g 0.003

4 0.00199 § oo

£ 0002

8 0.00149

0.001

16 0.00242 0.0005
32 0.00381 15 20 25 30 35

Number of Nodes

40,000 keys

2 0.007921
4 0.007094
8 0.004884
16 0.005504

32 0.006473 15 20 25 30 35

Number of nodes

Speed up factor

Speed up for 10,000 keys Speed up for 40,000 keys

1.69
1.39
)
1.04 1.16
1.04
2 4 8 16 32 2 4 8 16

Number of Nodes Number of Nodes

Speedup factor
Speedup factor

32

Challenges

* Allocation of higher order nodes 128, 256.
* Difficulty in debugging the Algorithmic flaws.

Outcome

* Found out how parallel implementation can reduce runtime by
significant amount compared to sequential runs.

* How runtime behaves as number of cores is increased.
e Observe speedup in latency with Amdahl’s law.
* Knowledge of MPI, Open MPI.

References

* https://ubccr.freshdesk.com/support/solutions/articles/13000026245
-tutorials-and-training-documents

* https://ubccr.freshdesk.com/support/solutions/articles/5000688140-
submitting-a-slurm-job-script

* https://cse.buffalo.edu/faculty/miller/teaching.shtml

e https://www.geeksforgeeks.org/bitonic-sort/
* Find my code on /github.com/sajid912/MPI-Bitonic-Sort

https://ubccr.freshdesk.com/support/solutions/articles/13000026245-tutorials-and-training-documents
https://ubccr.freshdesk.com/support/solutions/articles/5000688140-submitting-a-slurm-job-script
https://cse.buffalo.edu/faculty/miller/teaching.shtml
https://www.geeksforgeeks.org/bitonic-sort/
https://github.com/sajid912/MPI-Bitonic-Sort

Thank you!!

