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What is Bitonic Sort?

* To understand Bitonic Sort, we must first understand what is Bitonic
Sequence and how to make a given sequence Bitonic.

* A sequence is called Bitonic if it is first increasing, then decreasing. In
other words, an array arr[0..n-i] is Bitonic if there exists an index i
where 0<=i<=n-1 such that

x0<=x1..... <= xi and xi >= xi+1..... >= xn-1

* A sequence, sorted in increasing order is considered Bitonic with the
decreasing part as empty.



How to make a sequence Bitonic?
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MPI Implementation
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Whom to compare with?
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How to find the right pair?

for (i = 0; i <dimensions; i++) { // dimensions = log(n), iterates on stages
for (j =1i; j>=0; j--) { // combinations in each stage

if (((process_rank >> (i + 1)) % 2 == 0 && (process_rank >>j) % 2 ==0)
|| ((process_rank >> (i + 1)) % 2 != 0 && (process_rank >>j) % 2 1= 0)) {

ComparelLow(j);

} else {
CompareHigh(j);



Example comparison

* Consider the first comparison, where process rank in binary is 000
* It finds the partner using bitwise EXOR operation.
partner’s rank = process_rank " (1<<j)

 Where j is comparison bit varies from [0,logn) and n is the number of
pProcessors.



What happens in a Comparison?
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Few Results — 4 million keys
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10,000 keys
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40,000 keys
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Speed up factor
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Challenges

* Allocation of higher order nodes 128, 256.
* Difficulty in debugging the Algorithmic flaws.



Outcome

* Found out how parallel implementation can reduce runtime by
significant amount compared to sequential runs.

* How runtime behaves as number of cores is increased.
e Observe speedup in latency with Amdahl’s law.
* Knowledge of MPI, Open MPI.
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Thank you!!



