
CSE 708: SEMINAR ON

PROGRAMMING MASSIVELY

PARALLEL SYSTEMS
Implementing Parallel Matrix
Multiplication using SUMMA and MPI

SAKSHI MEHRA(50424433)

AGENDA
Ø Matrix Multiplication Definition and Use Case

Ø Process

Ø Sequential Approach

Ø Parallel Approach

Ø Results

Ø Conculsion

Ø References

MATRIX MULTIPLICATION
• Given two matrices Matrix A of size mxn with elements aij and

Matrix B of size nxp with elements bjk) . Matrix C is the product
of A and B with size mxp

NOTE: Number of
Columns of A =
Number of Rows of B

4

SEQUENTIAL APPROACH
ITERATIVE ALGORITHM

Complexity:

• The algorithm takes Θ(nmp) time.

• If input are square matrices of size nxn, the runtime is cubic i.e.
Θ(n3)

5

ikj vs ijk

6

Speed increases because cache hit increases.

RESULTS - SEQUENTIAL
Matrix Dimensions Time(ms) ijk Read optimized

Time(ms) ikj
1000 X 1000 1868 2516
2000 X 2000 29496 26394
3000 X 3000 104528 75631
4000 X 4000 273488 195324
5000 X 5000 1047400 344091
6000 X 6000 5446480 528849

8

PARALLEL APPROACH –SUMMA(SCALABLE
UNIVERSAL MATRIX MULTIPLICATION
ALGORITHM)
• Uses a shift algorithm to broadcast

• The SUMMA algorithm computes n partial outer products:

for k := 0 to n − 1 C[:, :] + = A[:, k] · B[k, :]

• Each row k of B contributes to the n partial outer products

• Communication Phase - Matrix A and Matrix B are divided into
submatrices based on the number of processors in the grid and sent to
their respective processors.

9

Data splitting/ Communication
Phase

10

Sub-Matrix of Matrix A and B are sent to Processors

Calculation Phase/ Computation
Phase
• Required Column Sub-Matrix of Matrix A is either within the

Processor or is brought in from a different processor

• Calculating result of new column and row in the submatrices.

• For each Processor Partial Resultant Matrix obtained.

• Complete Resultant Matrix of the matrix product betweeen A & B
obtained.

11

13

14

17

18

19

22

SUMMA Performance

23

Time = !
"
∗ 𝑛3 + 𝛼 log 𝑝 ∗ #

$
+ 𝛽𝑙𝑜𝑔𝑝 ∗ 𝑛!/𝑠

Processors 250 X 250 500 X 500 750 X 750 1000 X 1000 5000 X 5000 10000 X 10000

4 0.02265 0.0411683 0.15687 0.306646 48.7919 ~

9 0.021585 0.10323 0.218011 0.312147 44.7802 ~

16 0.0196146 0.0469481 0.0710892 0.118495 6.08682 89.0198

25 0.0136477 0.014682 0.0272895 0.0574698 9.36909 76.853

64 0.0441307 0.0566216 0.0728194 0.0821494 4.8575 34.8661

121 0.951168 0.881796 1.00411 1.01392 1.82618 23.2469

144 1.85181 1.86337 1.87949 1.88167 2.56661 21.5294

225 1.05108 1.09527 3.30053 1.09419 3.98347 13.3343

625 0.372938 0.117778 0.203478 0.160495 0.234925 1.78691
24

26

Observations:

• For data sizes upto 500
X 500, the performance
is almost same across all
nodes.

• After 500 X 500, the
performance with lesser
number of nodes
worsens drastically.

• At 1000 X 1000, using
number of nodes 4 and
9, yields large runtime.
The performance with
using number of nodes
as 16, 25, 64, yields
similar results, 25
number of nodes giving
slightly better results.

27

Observations:
• With matrix sizes

increasing above 1000,
the runtime increases
sharply for all node
count.

• The difference in runtime
with using 16, 25, and 64
nodes is also visible at
this size.

• Using 64 number of
nodes gives the least
runtime.

28

Observations:

• Above 5000 X
5000, the runtimes
increase
exponentially, 64
number of nodes
work best.

Results summary

29

Matrix size Number of nodes with best runtime

250 X 250 4

500 X 500 25

750 X 750 25

1000 X 1000 25

5000 X 5000 64

10000 X 10000 64

30

Key Takeaways

1. Using higher number of nodes(25+) gives worse results for smaller matrix sizes, since
the communication time between nodes becomes the largest factor in runtime.

2. The use of larger number of nodes is beneficial for large matrix sizes and 64 nodes work
best.

3. Runtimes with less than 64 number of nodes increase exponentially for matrix sizes
above 5000 X 5000.

References
• http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slide

s/Matrix%20Multiplication%20by%20Nur.pdf

• https://cs.iupui.edu/~fgsong/LearnHPC/summa/index.html

• https://www.andrew.cmu.edu/user/haewonj/documents/codml19
_full_summa.pdf

31

http://www.cs.csi.cuny.edu/~gu/teaching/courses/csc76010/slides/Matrix%20Multiplication%20by%20Nur.pdf
https://cs.iupui.edu/~fgsong/LearnHPC/summa/index.html

Thank you!

32

