PARALLEL
BREADTH-FIRST
SEARCH USING MPI

CSE 708 Programming Massively Parallel Syst
Presenter: Sandeep Kunusoth (50465621)
Instructor: Dr. Russ Miller

versity at Buffalo
G5 Depa rtment of Computer Science
and Engineering

School of Engineering and Applied Sciences

University at Buffalo

G5 Department of Computer Science

and Engineering
School of Engineering and Applied Sciences

Contents

— Breadth First Search

— Applications of BFS

— Serial Implementation of BFS - Dry Run

— Issues with serial implementation and Need for Parallelization
— Parallel Implementation of BFS - Dry Run

— Advantages of Parallel over Serial Implementation

— Results

— References

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Breadth-First Search

* |tis a graph traversal algorithm.

source node

« Starts with a given start node and traverse the
graph layer wise. We then move towards the
next level neighbors. ... et

-

....... S Layer 2

« Drawback: Extra memory required. Generally
Queue, to keep track of unexplored nodes.

source: hackerearth

https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/

University at Buffalo

G5 Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Applications of BFS:

 BFS can be used to find shortest path between 2 geographical locations on map
as routing algorithms for navigation systems.

 BFS is used by search engines to index and crawl the web pages.
* Peer to Peer Networks like BitTorrent.
 BFS can be used in Al applications such as path finding, recommender systems.

 BFS can be used in game theory to find next best move in games like Chess etc.

https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf

https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Serial BFS implementation

define serial_bfs(graph (V,E), source s):
for all v in V do
distancelv] = -1;
distancel[s] = 0; level = 0; FS = {s}; NS = {};
while FS is not empty do
level = level + 1;

for u in FS do
for each neighbour v of u do
if distancelv] = -1 then
push(v, NS);
distancel[v] = level;
FS = NS, NS = {};

https://en.wikipedia.ora/wiki/Parallel breadth-first search

level 0, FS ={0}, NS ={}

level 1, FS ={1,2,3}, NS ={}

order of traversal:

level 2,
FS={4,56,7}, NS={}

level 3,
FS={, NS={

0->1->2->3->4>5->6->7

https://en.wikipedia.org/wiki/Parallel_breadth-first_search

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Issues with serial implementation and Need for Parallelization

serial time data

100 A
define serial_bfs(graph (V,E), source s):

for all v in V do

distancelv] = -1;
distancel[s] = 0; level = 0; FS = {s}; NS =
while FS is not empty do

level = level + 1;

80 A

60

Execution Time

for u in FS do
for each neighbour v of u do
if distance[v] = -1 then
push(v, NS);
distance[v] = level;
FS = NS, NS = {};

40 A

20 A

20 400 8000 9000 10000 11000 12000 13000 14000 15000
Nodes

wiki/Parallel breadth-first search

https://en.wikipedia.org/wiki/Parallel_breadth-first_search

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

Parallel BFS implementation Modifications:

define 1_D_distributed_BFS(graph(V,E), source s, rank): o . . .
for all v in V do Similar to serial BFS implementation,
LSS W = S but instead of checking the queue of
if find_owner(s) = rank then vertices sequentially, we implement this

level = 0; FS = {}; NS = {};
= {s}; di [s] = 0; . :
Jlobal FS. 1e not oty = trae in parallel across all the vertices at the

while global_FS_is_not_empty do same |E§\/E§I.
level = level + 1;
FS = {set of local vertices}
for each u in FS do

i A neighbor vertex from one processor
j = find_owner(v) may belong to other processor. Hence
push(v, send_buffer[j]) :

each processor needs to communicate

// all-to-all communication
or O <00 S et with all others.
if j != rank then
send send_buffer[j] to j
recv recv_buffer[j] from j
NS = {neighbors of vertices in FS including non local}

The algorithm ends when global size of
for each u in NS and distance[u] == -1 do frontier across all processors is zero.

distance[u] = level
push(u, FS)
NS = {};
25 global_FS_is_not_empty = AllReduce(FS.size(), SUM) ==

7

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Processor O: Processor 1:
DI'y RllIl lteration1: lteration1:
FS = {0} FS ={}
NS = {1} NS = {}
6 All visited = {1 ,2,3}\Itel’ation 2:
lteration 2: FS ={2,3}
FS = {1} NS = {}

NS ={} All visited={5,6,7}
‘ ° ° All visited={4}
Processor 2: Processor 3:
@ ° ° lteration1: lteration1:

FS =} FS =}
NS = {} NS = {}
8 Vertices divided between 4 processors lteration 2: lteration 2:
Processor 0: {0, 1} FS ={} FS = {}
Processor 1: {2, 3} NS = {} NS = {}
Processor 2: {4, 5} lteration 3: lteration 3:
Processor 3: {6, 7} FS ={4,5} FS ={6,7}

NS = {} NS = {}

University at Buffalo

G5 Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Advantages of Parallel over Serial Implementation

« Efficiency: Parallel BFS improves performance by processing multiple vertices
in parallel, significantly enhancing overall efficiency.

« Scalability: It is highly scalable and can handle large scale graphs.

« Concurrency: Parallel BFS allows for concurrent exploration, minimizing idle
time and maximizing resource utilization.

« Load balancing: This ensures efficient utilization of computational resources.

University at Buffalo
Department of Computer Science
and Engineering

School of Engineering and Applied Sciences

$ slurm.sh

module load ccrsoft/2023.01
module load gcccore/11.2.0
module load intel

module load python/3.9.6

port I_MPI_PMI_LIBRARY=/opt/software/slurm/1ib64/1libpmi.so
srun pip install mpid4py numpy > /dev/null 2>&1

srun -n 40 python parallel-bfs.py 4000 60

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Standard Execution - 1000 vertices

2.5 -

- N
(9 o
1]

Execution time in seconds

~-
o
1

0.5 - !

0 10 20 30 40 50 60 70
Number of Processors

11

University at Buffalo

Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

n
©
c
o
O
L
»
£
)
=
e
c
o
e
>
o
)
>
W

Standard Execution - 2000 vertices

5.0 -

4.5 -

4.0 -

3.5 A

3.0 A

2.5 -

2.0 A

I ! I !

0 20 40 60 80

Number of Processors

12

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Standard Execution - 4000 vertices

Execution time in seconds

I 1 I 1 1 I ! 1

0 10 20 30 40 50 60 70 80
Number of Processors

13

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Standard Execution - 8000 vertices

35 A

30 -

25 A

20 -

Execution time in seconds

15 ~

0 20 40 60 80
Number of Processors
14

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Sequential vs Scaled

100 4
—&— Serial Execution

—&— Scaled Execution

80 A

60

40 -

Execution Time (seconds)

20 A

20 30 40 50 60 70 80 S0 100 110 120 130 140 15
Number of Processors (Scaled) OR Number of vertices*100 (Sequential)

15

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Speedup vs Number of Vertices

2.0 -
Speed up = Tseq/ Tp
Tseq is the execution time of sequential algorithm.
Tp is the execution time of the parallel algorithm with 1.5
p Processors
Q.
>
o
]
7]
& 1.0 -
0.5 -
0.0

2000 4000 6000 8000 10000 12000 14000
Number of Vertices

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

Future Work

« Access nodes greater than 143 nodes with 1 core per node.
« Test performance by changing density of edges in the graphs.
* Implement my parallel approach using OpenMPI or Hybrid of MPIl and OpenMPI.

17

University at Buffalo
Department of Computer Science

and Engineering

School of Engineering and Applied Sciences

References

« Wikipedia https://en.wikipedia.org/wiki/Parallel _breadth-first search

 BFS https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/

e Parallel BFS on Distributed Memory Systems https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
» Distributed BFS Algorithm, IIT Delhi https://www.youtube.com/watch?v=wpWvCabHqQU

« Applications https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf
« CCR Docs https://docs.ccr.buffalo.edu/en/latest/

e MPI for Python https://mpi4py.readthedocs.io/en/stable/

* MPI python https://www.youtube.com/watch?v=36nCgG40DJo&ab _channel=SharcnetHPC

18

https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/
https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
https://www.youtube.com/watch?v=wpWvCabHqQU
https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf
https://docs.ccr.buffalo.edu/en/latest/
https://mpi4py.readthedocs.io/en/stable/
https://www.youtube.com/watch?v=36nCgG40DJo&ab_channel=SharcnetHPC

