
‘-

1

CSE 708 Programming Massively Parallel Systems
Presenter: Sandeep Kunusoth (50465621)
Instructor: Dr. Russ Miller

PARALLEL
BREADTH-FIRST
SEARCH USING MPI

‘-

2

 Breadth First Search
 Applications of BFS
 Serial Implementation of BFS - Dry Run
 Issues with serial implementation and Need for Parallelization
 Parallel Implementation of BFS - Dry Run
 Advantages of Parallel over Serial Implementation
 Results
 References

Contents

‘-

3

• It is a graph traversal algorithm.

• Starts with a given start node and traverse the
graph layer wise. We then move towards the
next level neighbors.

• Drawback: Extra memory required. Generally
Queue, to keep track of unexplored nodes.

Breadth-First Search

source: hackerearth

https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/

‘-

4

• BFS can be used to find shortest path between 2 geographical locations on map
as routing algorithms for navigation systems.

• BFS is used by search engines to index and crawl the web pages.

• Peer to Peer Networks like BitTorrent.

• BFS can be used in AI applications such as path finding, recommender systems.

• BFS can be used in game theory to find next best move in games like Chess etc.

Applications of BFS:

• https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf

https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf

‘-

5

Serial BFS implementation

order of traversal:
0 -> 1 -> 2 -> 3 -> 4-> 5 -> 6 -> 7

 https://en.wikipedia.org/wiki/Parallel_breadth-first_search

https://en.wikipedia.org/wiki/Parallel_breadth-first_search

‘-

6

Issues with serial implementation and Need for Parallelization

wiki/Parallel_breadth-first_search

https://en.wikipedia.org/wiki/Parallel_breadth-first_search

‘-

7

Parallel BFS implementation Modifications:
• Similar to serial BFS implementation,

but instead of checking the queue of
vertices sequentially, we implement this
in parallel across all the vertices at the
same level.

• A neighbor vertex from one processor
may belong to other processor. Hence
each processor needs to communicate
with all others.

• The algorithm ends when global size of
frontier across all processors is zero.

‘-

8

Processor 0:
Iteration1:
 FS = {0}
 NS = {1}
 All visited = {1,2,3}
Iteration 2:
 FS = {1}
 NS = {}
 All visited={4}

Processor 1:
Iteration1:
 FS = {}
 NS = {}
Iteration 2:
 FS = {2,3}
 NS = {}
 All visited={5,6,7}

8 Vertices divided between 4 processors
Processor 0: {0, 1}
Processor 1: {2, 3}
Processor 2: {4, 5}
Processor 3: {6, 7}

Processor 2:
Iteration1:
 FS = {}
 NS = {}
Iteration 2:
 FS = {}
 NS = {}
Iteration 3:
 FS = {4,5}
 NS = {}

Processor 3:
Iteration1:
 FS = {}
 NS = {}
Iteration 2:
 FS = {}
 NS = {}
Iteration 3:
 FS = {6,7}
 NS = {}

Dry Run

‘-

9

Advantages of Parallel over Serial Implementation
• Efficiency: Parallel BFS improves performance by processing multiple vertices

in parallel, significantly enhancing overall efficiency.

• Scalability: It is highly scalable and can handle large scale graphs.

• Concurrency: Parallel BFS allows for concurrent exploration, minimizing idle
time and maximizing resource utilization.

• Load balancing: This ensures efficient utilization of computational resources.

‘-

10

‘-

11

‘-

12

‘-

13

‘-

14

‘-

15

‘-

16

Speed up = Tseq / Tp

Tseq is the execution time of sequential algorithm.

Tp is the execution time of the parallel algorithm with

 p Processors

‘-

17

• Access nodes greater than 143 nodes with 1 core per node.

• Test performance by changing density of edges in the graphs.

• Implement my parallel approach using OpenMPI or Hybrid of MPI and OpenMPI.

Future Work

‘-

18

• Wikipedia https://en.wikipedia.org/wiki/Parallel_breadth-first_search

• BFS https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/

• Parallel BFS on Distributed Memory Systems https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf

• Distributed BFS Algorithm, IIT Delhi https://www.youtube.com/watch?v=wpWvCabHqQU

• Applications https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf

• CCR Docs https://docs.ccr.buffalo.edu/en/latest/

• MPI for Python https://mpi4py.readthedocs.io/en/stable/

• MPI python https://www.youtube.com/watch?v=36nCgG40DJo&ab_channel=SharcnetHPC

References

https://en.wikipedia.org/wiki/Parallel_breadth-first_search
https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/
https://people.eecs.berkeley.edu/~aydin/sc11_bfs.pdf
https://www.youtube.com/watch?v=wpWvCabHqQU
https://www.ijcsma.com/articles/graph-traversals-and-its-applications-in-graph-theory.pdf
https://docs.ccr.buffalo.edu/en/latest/
https://mpi4py.readthedocs.io/en/stable/
https://www.youtube.com/watch?v=36nCgG40DJo&ab_channel=SharcnetHPC

