
PARALLELIZATION OF
PRIM’S ALGORITHM
TO FIND THE MST
By Sarath Chandra Reddy Rayapu

Minimum Spanning Tree (MST) of a graph
• A spanning tree (a tree with all the nodes in the graph) where the

sum of the edges is the least possible.

Applications of MST
• Design of cost-effective Networks and efficient Circuits

• Transportation Planning: to determine the most cost-effective
routes for building roads, railways, or other transportation
networks.

• Image Processing: used in Image Segmentation

3

Prim’s Algorithm (Sequential):
1. Initialize a tree with a single vertex, chosen arbitrarily from the
graph.

2. Grow the tree by one edge: Of the edges that connect the tree to
vertices not yet in the tree, find the minimum-weight edge, and
transfer it to the tree.

3. Repeat step 2 (until all vertices are in the tree)

4. Time = O(n^2)

Pseudo code for Parallel approach
• Initialization:

• Divide the set of vertices V into p subsets V1, V2, ..., Vp

• Assign each subset to a different process

• While vertices_in_MST is not equal to V:

• For each process pi:

• Find the minimum-weight edge ei (candidate) connecting MST to vertices in Vi

• Send ei to the root process using MPI_Reduce to find the global minimum-
weight edge emin

• If rank of current process is root:

• Select the minimum-weight edge emin from the received edges

• Add emin to MST

• Broadcast emin to all processes

• Continue this till all the vertices are in the MST

• Time = O(n^2/p) + O(nlogp)

P1 P3P2

• Partitioning of adjacency matrix among ‘p’ processors:

Results
• Input graph: 10000 nodes (5% density)

Ti
m

e
ta

ke
n

(S
ec

)

0

0.125

0.25

0.375

0.5

Nodes

2 4 8 16 20 25

S
pe

ed
up

0

2

4

6

8

Nodes

2 4 8 16 20 25

Results
• Input graph: 10000 nodes (10% density)

Ti
m

e
ta

ke
n

(S
ec

)

0

0.25

0.5

0.75

1

Nodes

1 2 4 8 16 25 40 50

S
pe

ee
du

p

0

1

2

3

4

5

Nodes

2 4 8 16 25 40 50

Results
• Input graph: 10000 nodes (20% density)

Ti
m

e
ta

ke
n

(S
ec

)

0

0.75

1.5

2.25

3

Nodes

1 2 4 8 16 25 40 50

S
pe

ee
du

p

0
2
4
6
8

10
12
14

Nodes

2 4 8 16 25 40 50

Observations
• This algorithm works best with larger datasets by gaining

considerable speedups.

• Also, higher density graphs are better suited for this as we are
using an adjacency matrix to store the graph.

References
• Parallelization of Minimum Spanning Tree Algorithms Using

Distributed Memory Architectures
http://www.scl.rs/papers/Loncar-TET-Springer.pdf

http://www.scl.rs/papers/Loncar-TET-Springer.pdf

THANK YOU

