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Problem Definition: Image Blurring

1972+1/9*2+1/9" 4+
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Kemel Inputlmage 1/19*5+1/9*5+1/9*5 =4
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The essence of image blurring (or any
other type of filtering) is Matrix
Multiplication. Which apply a kernel (matrix)
on the image matrix to change its value and

repeat the multlpllcatlon for each of the pIX6| n Img 1. image filtering . Source: https://www.imgtec.com/blog/heterogeneous-
image matrix. compute-case-study-image-convolution-filtering/
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Image Blurring Sequential algorithm:

JGiven a image with size m x n, and a filter of size r x r
Do a r x r size matrix multiplication for each pixel in the image matrix.

There are a total of m*n pixels in the image and the time complexity for a matrix multiplication is
O(r3) . Thus, the overall time complexity of the sequential algorithm is O(m * n * r3).

JFor simplicity, we assume m = n =r. So the time complexity of the sequential algorithm is O(n®).

Fi!ter mf\trix Image matrix (size : m * n)
(size:r*r) . . :
r n for (i=0;i<m;i++)
wlw|u| f2|2[4f4|6|6|6|6]~ for(j=0;i<n;j++)
r [ v e llE dliiaing matrix_multiplication(); O(r?)
10| 19| 19 sAB BN 31 S| 31 end for
/7 s|s|8s|6]|a]|2]2 end for
9|8 (10(10| 8 | 4| 4| ?
me|6|9[9|7]|8]|s Overall time complexity of this algorithm is O(n®)

7|17(919|8]|°

pixel[i]j] L7L"1°1°]¢® ’
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Image Blurring with parallel matrix multiplication

Ago | Aox | Aoz | Acs By, By, By, By,
I i, 2, |, P03

1.Partition these matrices in square blocks p, where p is

the number of processes available. So there are sqrt(p) *
sqrt(p) submatrices.
2.Each process (Pij) can maintain a submatrix of A matrix N T e o MR RS s T
(Aij) and a submatrix of B matrix (Bij). S Y O
3.Each block is sent to each process, and the copied sub T T e e e e e
blocks are multiplied together and the results added to the ot 6 S s e

partial results in the C sub-blocks. v rwe e owe B yws ywapwa b
4.The A sub-blocks are rolled one step to the left and the A e e P P P
B sub-blocks are rolled one step upward. e e 1N I PR S N

cond shift (f) Submatrix locations after third shift

&

5.Repeat steps 3 & 4 sqrt(p) times to get the final result. M

Img 2. parallel matrix computing. Source:
https://ig.opengenus.org/cannon-algorithm-
distributed-matrix-multiplication/
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Image Blurring with parallel matrix multiplication

Example: two 4 x 4 matrix multiplication with 4 processors.

2 1 5 3 6 1 2 3
O 7 1 6 4 5 6 5
A= B =
9 2 4 4 1 9 8 -8
3 6 7 2 4 0 -8 5
First, partition each of the matrix into 4 submatrices:
2 1 5 3 6 112 3 pad od
0 7 1 6 4 5ile6 5 A00 B0O: : AO1 BO1
A= g‘.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.' fff ;.III.'ZI.'IIIII.'II.'IIIIIIII.'II." B =
9 2 4 4 1 918 -8 .0 oy
3 67 2 4 0l-8 5 A10B10i | A11B11
ER 3 S P i LD e et BN B A, 5
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Image Blurring with parallel matrix multiplication

Second, shift first round of row, column data for initial alignment. Then do the local matrix

multiplication.

Data shifting between processors:

6 1][2 3 iimﬁ'zzam
4. 5|6 5
A= B = ng 878 P10 P11
A10 B10 A11 B11
2 olls 51 0 Ll
Partial result matrix CO :
5 3 (2 1T 912 3 17 45(10 11
1 610 4 016 5 25 9 |42 35
AO = BO = =
9 2 14 6 1| 8 -8 62 19| 0 -12
3 6|7 4 5(-8 95 42 33140 -46
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Image Blurring with parallel matrix multiplication

Third, do second round of row, column data shifting, then do the local matrix multiplication:

Data shifting between processors:
2 115 3 6 112 3 288 B0O 281 B11
O 7 1 6 B B 4 5 6‘t 5 .............................. 3 f
A= T —— - 1 o lig™ 8 P10 P11
9 2« 4 4 A11 B1 'A10 B01
3 ............. 6 7 ............. 2 .... 4 O -8 ........... 5 ST S
‘ Partial result matrix C1 :
2 115 3 6 118 -8 16 7 |16 -25
O 7|1 6 4 5|-8 5 28 35[-40 22
AO = BO = R
4 419 2 1 912 3 20 36|30 37
/7 2|3 6 4 0|6 5 15 63|42 39

7
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Image Blurring with parallel matrix multiplication

Finally, update the partial result matrix C1 to C0 to get the final result.

C=C0+C1=

17 45
9

10 11
42 35

62 19
42 33

0 -12
40 -46

16 7
28 35

16 -25
-40 22

20 36
15 63

30 37
42 39

33 52
53 44

26 -14
2 57

82 55
57 96

30 25
82 -7
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Image Blurring with parallel matrix multiplication

Run parallel image blurring algorithm with OpenMP:

O Convert input image data into matrix representation and define filter matrix.
O Write the program for image blurring with Cannon’s algorithm.

O Parallelize the matrix multiplication part of the program using OpenMP.

O Test the program with different settings to compare the result.
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Experiments:

Image size 1000 x 1000 test result:

Num of processors Run time (s Speed u .
P ) peed up | Image Size:1000 x 1000
1 13.48 1.0 Runtime (s)
2 6.72 2.0 16.00
4 3.36 4.0
14.00
8 1.69 8.0
16 0.85 15.8 12.00
32 0.44 30.7 10.00
8.00
6.00
4.00
2.00
0.00
1 2 4 8 16 32 num of

processors

10
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Experiments:

Image size 5000 x 5000 test result:

Num of processors Run time Speed up Image Size:5000 x 5000
Runtime (s) ’
1 261.37 1.0
2 131.65 2.0 300.00
4 67.51 3.9
250.00
8 35.14 7.4
16 18.61 14.0 200.00
32 10.91 24.0
150.00
100.00
50.00
0.00
1 2 4 8 16 32 num of

processors
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Experiments:

Image size 10000 x 10000 test result:

Num of processors Run time Speed up |mage Size:10000 x 10000
Runti
1 1067.80 1.00 untime (s)
2 535.62 1.99 1200.00
4 275.84 3.87
1000.00
8 143.11 7.46
16 76.76 13.91 800.00
32 44 .45 24.02
600.00
400.00
200.00
0.00
1 2 4 8 16 32 num of
processors

12
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Observations:

* Algorithm has very good scalability against input data size:

With the same number of processors being constant (32), data size change form 10°
(1000x1000), 25 x 10° (5000 x 5000) to 100 x10°® (10000 x 10000);

Input data size (relative) Runtime (s) Runtime(relative)
1 0.44 1

25 10.91 24.8

100 44.45 101.0

13
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Observations:

* Algorithm doesn’t work very well when the data size if very small. Probably due to
multithreading message passing overhead over shadows the actual calculating time,
which is very small.

* For example, with image size of 100x100:

Num of processors Runtime(s) Small data size (100x100)
1 0.000605 Runtime(s)

0.002
2 0.000531 0.0018
4 0.000416 0.0016
0.0014
8 0.000488 0.0012
0.001
16 0.000870 00008
32 0.00178 0.0006
0.0004
0.0002
0

1 2 4 8 16 32

14
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Thanks!
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