Parallel Image Blurring
With OpenMP

Prepared by: Sen Pan
Instructor: Dr. Russ Miller

Date : Dec 10, 2020

% University at Buffalo The State University of New York

% University at Buffalo The State University of New York

Problem Definition: Image Blurring

1972+1/9*2+1/9" 4+
1972+1/9*2+1/9*5+

Kemel Inputlmage 1/19*5+1/9*5+1/9*5 =4

Image blurring is a type of image filtering wlmwlw| [2]2]a]a|6|6|6]6] Output Image

L . . . 19{| 19 2|)5 (54|77 |3]|= 4)4a|4|5|5|5
which is everywhere in our daily lives. filtered s e B L v s iy e o PARITIvED
photos (blurred, sharppend etc.) are 7|88 |8|s|4a]2]|2 7[7]7]6[a]s

L. .] . 918|1|10| 8| 4 | 4| 2 g8| 8|8 |7|5]¢
ubiquitous in our social media feeds, olslo|9|7|6|s 8|9|9|s8|s
magazines, books. T|T|e|eje|” 88|88

7 7 8 8 8

The essence of image blurring (or any
other type of filtering) is Matrix
Multiplication. Which apply a kernel (matrix)
on the image matrix to change its value and

repeat the multlpllcatlon for each of the pIX6| n Img 1. image filtering . Source: https://www.imgtec.com/blog/heterogeneous-
image matrix. compute-case-study-image-convolution-filtering/

% University at Buffalo The State University of New York

Image Blurring Sequential algorithm:

JGiven a image with size m x n, and a filter of size r x r
Do a r x r size matrix multiplication for each pixel in the image matrix.

There are a total of m*n pixels in the image and the time complexity for a matrix multiplication is
O(r3) . Thus, the overall time complexity of the sequential algorithm is O(m * n * r3).

JFor simplicity, we assume m = n =r. So the time complexity of the sequential algorithm is O(n®).

Fi!ter mf\trix Image matrix (size : m * n)
(size:r*r) . . :
r n for (i=0;i<m;i++)
wlw|u| f2|2[4f4|6|6|6|6]~ for(j=0;i<n;j++)
r [v e llE dliiaing matrix_multiplication(); O(r?)
10| 19| 19 sAB BN 31 S| 31 end for
/7 s|s|8s|6]|a]|2]2 end for
9|8 (10(10| 8 | 4| 4| ?
me|6|9[9|7]|8]|s Overall time complexity of this algorithm is O(n®)

7|17(919|8]|°

pixel[i]j] L7L"1°1°]¢® ’

% University at Buffalo The State University of New York

Image Blurring with parallel matrix multiplication

Ago | Aox | Aoz | Acs By, By, By, By,
I i, 2, |, P03

1.Partition these matrices in square blocks p, where p is

the number of processes available. So there are sqrt(p) *
sqrt(p) submatrices.
2.Each process (Pij) can maintain a submatrix of A matrix N T e o MR RS s T
(Aij) and a submatrix of B matrix (Bij). S Y O
3.Each block is sent to each process, and the copied sub T T e e e e e
blocks are multiplied together and the results added to the ot 6 S s e

partial results in the C sub-blocks. v rwe e owe B yws ywapwa b
4.The A sub-blocks are rolled one step to the left and the A e e P P P
B sub-blocks are rolled one step upward. e e 1N I PR S N

cond shift (f) Submatrix locations after third shift

&

5.Repeat steps 3 & 4 sqrt(p) times to get the final result. M

Img 2. parallel matrix computing. Source:
https://ig.opengenus.org/cannon-algorithm-
distributed-matrix-multiplication/

% University at Buffalo The State University of New York

Image Blurring with parallel matrix multiplication

Example: two 4 x 4 matrix multiplication with 4 processors.

2 1 5 3 6 1 2 3
O 7 1 6 4 5 6 5
A= B =
9 2 4 4 1 9 8 -8
3 6 7 2 4 0 -8 5
First, partition each of the matrix into 4 submatrices:
2 1 5 3 6 112 3 pad od
0 7 1 6 4 5ile6 5 A00 B0O: : AO1 BO1
A= g‘.' fff ;.III.'ZI.'IIIII.'II.'IIIIIIII.'II." B =
9 2 4 4 1 918 -8 .0 oy
3 67 2 4 0l-8 5 A10B10i | A11B11
ER 3 S P i LD e et BN B A, 5

% University at Buffalo The State University of New York

Image Blurring with parallel matrix multiplication

Second, shift first round of row, column data for initial alignment. Then do the local matrix

multiplication.

Data shifting between processors:

6 1][2 3 iimﬁ'zzam
4. 5|6 5
A= B = ng 878 P10 P11
A10 B10 A11 B11
2 olls 51 0 Ll
Partial result matrix CO :
5 3 (2 1T 912 3 17 45(10 11
1 610 4 016 5 25 9 |42 35
AO = BO = =
9 2 14 6 1| 8 -8 62 19| 0 -12
3 6|7 4 5(-8 95 42 33140 -46

% University at Buffalo The State University of New York

Image Blurring with parallel matrix multiplication

Third, do second round of row, column data shifting, then do the local matrix multiplication:

Data shifting between processors:
2 115 3 6 112 3 288 B0O 281 B11
O 7 1 6 B B 4 5 6‘t 5 3 f
A= T —— - 1 o lig™ 8 P10 P11
9 2« 4 4 A11 B1 'A10 B01
3 6 7 2 4 O -8 5 ST S
‘ Partial result matrix C1 :
2 115 3 6 118 -8 16 7 |16 -25
O 7|1 6 4 5|-8 5 28 35[-40 22
AO = BO = R
4 419 2 1 912 3 20 36|30 37
/7 2|3 6 4 0|6 5 15 63|42 39

7

% University at Buffalo The State University of New York

Image Blurring with parallel matrix multiplication

Finally, update the partial result matrix C1 to C0 to get the final result.

C=C0+C1=

17 45
9

10 11
42 35

62 19
42 33

0 -12
40 -46

16 7
28 35

16 -25
-40 22

20 36
15 63

30 37
42 39

33 52
53 44

26 -14
2 57

82 55
57 96

30 25
82 -7

% University at Buffalo The State University of New York

Image Blurring with parallel matrix multiplication

Run parallel image blurring algorithm with OpenMP:

O Convert input image data into matrix representation and define filter matrix.
O Write the program for image blurring with Cannon’s algorithm.

O Parallelize the matrix multiplication part of the program using OpenMP.

O Test the program with different settings to compare the result.

% University at Buffalo The State University of New York

Experiments:

Image size 1000 x 1000 test result:

Num of processors Run time (s Speed u .
P) peed up | Image Size:1000 x 1000
1 13.48 1.0 Runtime (s)
2 6.72 2.0 16.00
4 3.36 4.0
14.00
8 1.69 8.0
16 0.85 15.8 12.00
32 0.44 30.7 10.00
8.00
6.00
4.00
2.00
0.00
1 2 4 8 16 32 num of

processors

10

% University at Buffalo The State University of New York

Experiments:

Image size 5000 x 5000 test result:

Num of processors Run time Speed up Image Size:5000 x 5000
Runtime (s) ’
1 261.37 1.0
2 131.65 2.0 300.00
4 67.51 3.9
250.00
8 35.14 7.4
16 18.61 14.0 200.00
32 10.91 24.0
150.00
100.00
50.00
0.00
1 2 4 8 16 32 num of

processors

11

% University at Buffalo The State University of New York

Experiments:

Image size 10000 x 10000 test result:

Num of processors Run time Speed up |mage Size:10000 x 10000
Runti
1 1067.80 1.00 untime (s)
2 535.62 1.99 1200.00
4 275.84 3.87
1000.00
8 143.11 7.46
16 76.76 13.91 800.00
32 44 .45 24.02
600.00
400.00
200.00
0.00
1 2 4 8 16 32 num of
processors

12

% University at Buffalo The State University of New York

Observations:

* Algorithm has very good scalability against input data size:

With the same number of processors being constant (32), data size change form 10°
(1000x1000), 25 x 10° (5000 x 5000) to 100 x10°® (10000 x 10000);

Input data size (relative) Runtime (s) Runtime(relative)
1 0.44 1

25 10.91 24.8

100 44.45 101.0

13

% University at Buffalo The State University of New York

Observations:

* Algorithm doesn’t work very well when the data size if very small. Probably due to
multithreading message passing overhead over shadows the actual calculating time,
which is very small.

* For example, with image size of 100x100:

Num of processors Runtime(s) Small data size (100x100)
1 0.000605 Runtime(s)

0.002
2 0.000531 0.0018
4 0.000416 0.0016
0.0014
8 0.000488 0.0012
0.001
16 0.000870 00008
32 0.00178 0.0006
0.0004
0.0002
0

1 2 4 8 16 32

14

% University at Buffalo The State University of New York

References:

Russ Miller, “Algorithms Sequential & Parallel: A Unified Approach”

Larry Meadows, “A Hands-on Introduction to OpenMP 7;

Valentin Stoica, “Parallel Implementation of Image Filtering Algorithms in Multiprocessor Systems”;

Ortega, Patricia, “Parallel Algorithm for Dense Matrix Multiplication”
https://cse.buffalo.edu/faculty/miller/Courses/CSE633/Ortega-Fall-2012-CSE633.pdf ;

https://www.youtube.com/watch?v=nE-xN4Bf8XI&list=PLLX-Q6B8xqZ8n8bwjGdzBJ25X2utwnoEG

15

% University at Buffalo The State University of New York

Thanks!

16

