SIEVE PARALLEL
ALGORITHM

CSE708 — Shivangi Mishra

Professor - Russ Miller

% University at Buffalo The State University of New York

% University at Buffalo The state University of New York

CONTENT

1. Intro to Prime Number

2. Sequential Sieve Background
3. Parallel Sieve Implementation
4. Results and Observations

5. Slurm Script and Execution

6. References

% University at Buffalo The state University of New York

Sequential Algorithm

FindPrime(n):
prime = [for i in range(n+1)]
for i in range(2,n+1):

for j in range(2,1i):

if 1%j==0:
prime[i]=
break
prime[i] =

Time complexity: O(n*2)

» The prime number is a positive integer greater

than 1 that has exactly two factors, 1
and the number itself.
First few prime numbers are 2, 3,5, 7,11, 13, 17, 19, 23

Except for 2, which is the smallest prime number
and the only even prime number, all prime numbers
are odd numbers.

Every prime number can be represented in form of
6n + 1 or 6n — 1 except the prime numbers 2 and 3,
where n is any natural number.

Sieve of

Eratosthenes

The Sieve of Eratosthenes is a method used to find
prime numbers.

Prime numbers are important in modern encryption
algorithms like sha256 that keep our digital
transactions safe.

Public-key cryptography also uses prime numbers to
create specialized keys.

The Sieve is also used in mathematics, abstract
algebra, and elementary geometry to study shapes
that reflect prime numbers.

Biologists use the Sieve to model population growth,
and composers use prime numbers to create metrical
music.

Olivier Messiaen, a French composer, used prime
numbers to create unique rhythms in his music pieces.

% University at Buffalo The state University of New York

Sieve Simulation

% University at Buffalo The state University of New York

Sequential Sieve Algorithm

1 2 3 4 5 6 find primes up to N
7 3 g 10 1 12 For all numbers a : from 2 to sqrt(n)
IF a 1s unmarked THEN

13 14 15 16 17 18 ‘ |

a 1§ prime
19 2L = 22 = 24 For all multiples of a (a < n)
25 26 27 28 29 30 mark multiples of as composite
31 32 33 34 35 36 All unmarked nummbers are prime!

Pseudo code

Time complexity: O(n*log(log(n)))

% University at Buffalo The state University of New York

Parallel Sieve Implementation

> Split the array of length n between threads p each of size n/p.

> Ultilize the #pragma omp parallel for directive to concurrently set the 'prime' array as 'True.' This directive
distributes the workload among multiple threads for each array segment, enhancing efficiency.

» Simultaneously, multiple threads are employed to eliminate the non-prime multiples within the range of 2
to the square root of 'n."' This parallelization accelerates the process of finding prime numbers.

» Upon identifying the prime numbers in each thread, tally the count of primes from every thread and
consolidate the results using #pragma omp parallel for reduction(+:primeCount).

» The master thread is responsible for displaying the final outcome, streamlining the presentation of prime
numbers found through parallel computation.

% University at Buffalo The state University of New York

Thread 1
Thread 2
Thread 3
Thread 4

Marking array as True

0 1 2 3
4 S 6 7
8 9 10 11
12 13 14 15

% University at Buffalo The state University of New York

Cancelling Out Multiples

#pragma omp parallel for
for (int p = 2; p <= sqrt_n; p++) {
int thread_id = omp_get_thread_num();
printf(“"\nFor thread_id %d, p = %d\n", thread_id, p);
if (primelp]
#pragma omp parallel for
for (int i = p x p; i <=n; i += p) {
printf("\n For thread_id %d, p = %d, i = %d\n", thread_id, p, i);

prime[i] = false;

% University at Buffalo The state University of New York

Thread Distribution

Thread O Thread 1 Thread 2

Outer Loop (5
Inner Loop (i) 16-49 | 25-49 36-49 | 49-49

% University at Buffalo The state University of New York

Thread Distribution output

= output.txt
= output.txt
Prime numbers up to 49 are:
For thread_id 1, p =5, 1
For thread _id 1,
For thread _id 1,

For thread _id 1,

For thread _id 1,

Total prime count:
Work took 0.000793 seconds

% University at Buffalo The state University of New York

Result parallel

Input size: 1078

35

Time

25

0 10 20 30 40 50 60

No of Threads

12

% University at Buffalo The state University of New York

Result parallel
Input size: 1010

10

Time
~

10 20 30 40 50 60

No of Threads

13

% University at Buffalo The state University of New York

Speed-Up
Tseq Tseq = 1.71 seconds.

Input size: 108 SpeedUp =———

Tparallel

0.9

0.8

Speedup

0.7
0.6
0.5

0.4
10 20 30 40 50 60

No of Threads

14

% University at Buffalo The state University of New York

Efficiency

Input size: 108 Efficiency =2 Tseq = 1.71 seconds.
05
04
2 03
g
£ 0
0.1
0
10 20 30 40 50 60
No of Threads

15

% University at Buffalo The state University of New York

Scaled Result(Gustafson’s law)

Input size: 106 Data per thread = 1026

0.9
0.8

0.7

Time

0.6

0.5

0.4

0.3
10 20 30 40 50 60

No of Threads

16

% University at Buffalo The state University of New York

S sieve_openm.slurm X

openmp_sieve > $ sieve_openm.slurm

Slurm Script

OpenMP configuration
1 node, 1 task & 64 cores requested

Specifying the total number of
threads running for the parallel
execution

module load intel

gcc sieve_compiled sieve_openmp.cC

for nt in 1 2 4 8 16 32 64; do

OMP_NUM_THREADS=$nt
./sieve_compiled 17
done

% University at Buffalo The state University of New York

Script Execution

As requested by the slurm script,
we got a single node “cpn-i14-
06” which has 64 cores.

commands used:

squeue —u $USER - to see the
list of active nodes

shodes cpn-i14-06 - to see the
node configuration

[mishra22@vortexl:~/Desktos; openmp_sievel$ squeue —u $USER
JOBID PARTZ{ION NAME USER ST TIME
14464496 ccneral-c sieve mishra22 R 0:02
14464424 scavenger ood-vsco mishra22 R 928
[mishra22@vort<xl:~/Desktop/openmp_sievel$ snodes cpn-il4-06
HOSTNAMES STATE GRUSESEIE:] CPUS(A/I/0/T) CPU_LOAD MEMO
0/64/0/64 0.00

NODE

cpn—-114-06 resv 64
, FUTURE
cpn-114-06 resv 64
, FUTURE
[mishra22@vortexl:~/Desktop/openmp_sievel$

28872811

2:32:1 0/64/0/64 0.00

512000

512000

v 14464496 sieve

NG sieve 14464496

Cluster
JobId
Job Name
User
Account
Partition

State

Total Nodes
Node List

Total CPUs

Time Used
Start Time
End Time

Memory

mishra22

cse708f23 00:00:03 general-

compute

UB-HPC Cluster
14464496

sieve

mishra22
cse708f23
general-compute

COMPLETED

1

cpn-i14-06

0:03
2023-12-1119:22:18
2023-12-1119:22:21
2800M

Completed

UB-HPC
Cluster

S NODELIST(REASON)
1 cpn-i14-06
1 cpn—q07-18

RY GRES
(null)

(null)

PARTITION
general-computex

scavenger

AVAIL_FEATURES
AVX512, CPU-Gold-6448Y, INTEL, 114

AVX512, CPU-Go1d-6448Y, INTEL, 114

18

.[é University at Buffalo The state University of New York

References

* GFG
* OpenMP Slides

19

% University at Buffalo The state University of New York

Thank You
Questions ?

20

