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Sequential Algorithm

Time complexity: O(n^2)
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Ø The prime number is a positive integer greater 
than 1 that has exactly two factors, 1 
and the number itself. 
First few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23

Ø Except for 2, which is the smallest prime number 
and the only even prime number, all prime numbers 
are odd numbers.

Ø Every prime number can be represented in form of
6n + 1 or 6n – 1 except the prime numbers 2 and 3, 
where n is any natural number.



Sieve of 
Eratosthenes

• The Sieve of Eratosthenes is a method used to find 
prime numbers. 

• Prime numbers are important in modern encryption 
algorithms like sha256 that keep our digital 
transactions safe.

• Public-key cryptography also uses prime numbers to 
create specialized keys. 

• The Sieve is also used in mathematics, abstract 
algebra, and elementary geometry to study shapes 
that reflect prime numbers. 

• Biologists use the Sieve to model population growth, 
and composers use prime numbers to create metrical 
music. 

• Olivier Messiaen, a French composer, used prime 
numbers to create unique rhythms in his music pieces.
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Sieve Simulation



Sequential Sieve Algorithm
1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36
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Time complexity: O(n*log(log(n)))

Pseudo code



Parallel Sieve Implementation
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Ø Split the array of length n between threads p each of size n/p.

Ø Utilize the #pragma omp parallel for directive to concurrently set the 'prime' array as 'True.' This directive 
distributes the workload among multiple threads for each array segment, enhancing efficiency.

Ø Simultaneously, multiple threads are employed to eliminate the non-prime multiples within the range of 2 
to the square root of 'n.' This parallelization accelerates the process of finding prime numbers.

Ø Upon identifying the prime numbers in each thread, tally the count of primes from every thread and 
consolidate the results using #pragma omp parallel for reduction(+:primeCount).

Ø The master thread is responsible for displaying the final outcome, streamlining the presentation of prime 
numbers found through parallel computation.



  Marking array as True

0 1 2 3

4 5 6 7
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Thread 3

Thread 4



Cancelling Out Multiples



2       3

4-49 9-49

Thread 0

4       5

16-49 25-49
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6       7

36-49 49-49

Thread 2

Outer Loop (p)

Inner Loop (i)

Thread Distribution



Thread Distribution output



Result parallel 
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Threads Time in sec
1 1.71
2 1.65
4 1.54
8 2.47
16 2.57
32 2.88
64 4.02

Input size: 10^8



Result parallel 
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Threads Time in sec
1 8.88
2 7.66
4 6.10
8 3.66
16 5.04
32 7.24
64 10.49

Input size: 10^10



Speed-Up

14

Threads Speedup
1 1
2 1.03
4 1.11
8 0.69
16 0.66
32 0.59
64 0.42

Input size: 10^8 SpeedUp = !!"#
!$%&%''"'

𝑇"#$ = 1.71 seconds.



Efficiency
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Threads Time Cost Efficiency

2 1.65 3.3 0.51

4 1.54 6.16 0.27

8 2.47 19.76 0.08

16 2.57 41.12 0.04

32 2.88 92.16 0.01

64 4.02 257.28 0.006

Input size: 10^8 Efficiency =!!"#
%&"'

𝑇"#$ = 1.71 seconds.



Scaled Result(Gustafson’s law)
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Threads Time Input size

1 0.73 10^6

2 0.52 2*10^6

4 0.31 4*10^6

8 0.46 8*10^6

16 0.78 16*10^6

32 0.94 32*10^6

64 1.03 64*10^6

Input size: 10^6 Data per thread = 10^6



Slurm Script
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OpenMP configuration
1 node, 1 task & 64 cores requested

Specifying the total number of 
threads running for the parallel 

execution



Script Execution
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As requested by the slurm script, 
we got a single node “cpn-i14-
06” which has 64 cores. 

commands used:
squeue –u $USER - to see the 
list of active nodes
snodes cpn-i14-06 - to see the 
node configuration
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Thank You
Questions ?
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