
SIEVE PARALLEL
ALGORITHM
CSE708 – Shivangi Mishra

Professor - Russ Miller

CONTENT
1. Intro to Prime Number

2. Sequential Sieve Background

3. Parallel Sieve Implementation

4. Results and Observations

5. Slurm Script and Execution

6. References

Sequential Algorithm

Time complexity: O(n^2)

3

Ø The prime number is a positive integer greater
than 1 that has exactly two factors, 1
and the number itself.
First few prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23

Ø Except for 2, which is the smallest prime number
and the only even prime number, all prime numbers
are odd numbers.

Ø Every prime number can be represented in form of
6n + 1 or 6n – 1 except the prime numbers 2 and 3,
where n is any natural number.

Sieve of
Eratosthenes

• The Sieve of Eratosthenes is a method used to find
prime numbers.

• Prime numbers are important in modern encryption
algorithms like sha256 that keep our digital
transactions safe.

• Public-key cryptography also uses prime numbers to
create specialized keys.

• The Sieve is also used in mathematics, abstract
algebra, and elementary geometry to study shapes
that reflect prime numbers.

• Biologists use the Sieve to model population growth,
and composers use prime numbers to create metrical
music.

• Olivier Messiaen, a French composer, used prime
numbers to create unique rhythms in his music pieces.

4

5

Sieve Simulation

Sequential Sieve Algorithm
1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

6

Time complexity: O(n*log(log(n)))

Pseudo code

Parallel Sieve Implementation

7

Ø Split the array of length n between threads p each of size n/p.

Ø Utilize the #pragma omp parallel for directive to concurrently set the 'prime' array as 'True.' This directive
distributes the workload among multiple threads for each array segment, enhancing efficiency.

Ø Simultaneously, multiple threads are employed to eliminate the non-prime multiples within the range of 2
to the square root of 'n.' This parallelization accelerates the process of finding prime numbers.

Ø Upon identifying the prime numbers in each thread, tally the count of primes from every thread and
consolidate the results using #pragma omp parallel for reduction(+:primeCount).

Ø The master thread is responsible for displaying the final outcome, streamlining the presentation of prime
numbers found through parallel computation.

 Marking array as True

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Thread 1

Thread 2

Thread 3

Thread 4

Cancelling Out Multiples

2 3

4-49 9-49

Thread 0

4 5

16-49 25-49

Thread 1

6 7

36-49 49-49

Thread 2

Outer Loop (p)

Inner Loop (i)

Thread Distribution

Thread Distribution output

Result parallel

12

Threads Time in sec
1 1.71
2 1.65
4 1.54
8 2.47
16 2.57
32 2.88
64 4.02

Input size: 10^8

Result parallel

13

Threads Time in sec
1 8.88
2 7.66
4 6.10
8 3.66
16 5.04
32 7.24
64 10.49

Input size: 10^10

Speed-Up

14

Threads Speedup
1 1
2 1.03
4 1.11
8 0.69
16 0.66
32 0.59
64 0.42

Input size: 10^8 SpeedUp = !!"#
!$%&%''"'

𝑇"#$ = 1.71 seconds.

Efficiency

15

Threads Time Cost Efficiency

2 1.65 3.3 0.51

4 1.54 6.16 0.27

8 2.47 19.76 0.08

16 2.57 41.12 0.04

32 2.88 92.16 0.01

64 4.02 257.28 0.006

Input size: 10^8 Efficiency =!!"#
%&"'

𝑇"#$ = 1.71 seconds.

Scaled Result(Gustafson’s law)

16

Threads Time Input size

1 0.73 10^6

2 0.52 2*10^6

4 0.31 4*10^6

8 0.46 8*10^6

16 0.78 16*10^6

32 0.94 32*10^6

64 1.03 64*10^6

Input size: 10^6 Data per thread = 10^6

Slurm Script

17

OpenMP configuration
1 node, 1 task & 64 cores requested

Specifying the total number of
threads running for the parallel

execution

Script Execution

18

As requested by the slurm script,
we got a single node “cpn-i14-
06” which has 64 cores.

commands used:
squeue –u $USER - to see the
list of active nodes
snodes cpn-i14-06 - to see the
node configuration

References

• GFG

• OpenMP Slides

19

Thank You
Questions ?

20

