
Image Down Scaling
Using MPI
by Shubham Prasad, Pednekar

For CSE708 : Programming Massively Parallel Systems

Instructed by Dr. Russ Miller.

What is
Image
Down-scaling?

3

Fine-grained
algorithm using
Cluster of size M*N

Fine-grained Algorithm for Image Down-scaling
● We approximate X to 2k. We take 3 mesh like clusters of size M*N with row-major-indexing.

● We distribute the M*N values of R, G and B over the 3 clusters of size M*N respectively. We do

this by giving the value of pixel [x y] to P[x y].

● Then we keep performing one of the following operations alternatively over all 3 sub-clusters

until we reach our desired resolution:

○ Horizontal Merging : All P[i j]<--(P[2i j] + P[2i+1 j])/2

○ Vertical Merging : All P[i j]<--(P[i 2j] + P[i 2j+1])/2

● After the ith iteration, the values on

P[0 0] -> P[0 M/(2i)] -> P[N/(2i) M/(2i)] -> P[N/(2i) 0]

for each mesh like clusters represents the down–scaled image!

Procedure for Horizontal
Merging

1. Every Processor, P[i j], gets
values of P[2i j] and
P[2i+1 j]

2. P[i j] calculates the average of
the 2 values,
(P[2i j] + P[2i+1 j])/2

3. P[i j] stores this calculated
average as its new value.

Procedure for Horizontal
Merging

1. Every Processor, P[i j], gets
values of P[2i j] and
P[2i+1 j]

2. P[i j] calculates the average of
the 2 values,
(P[2i j] + P[2i+1 j])/2

3. P[i j] stores this calculated
average as its new value.

Procedure for Vertical Merging

1. Every Processor, P[i j], gets
values of P[2i j] and
P[2i+1 j]

2. P[i j] calculates the average of
the 2 values,
(P[2i j] + P[2i+1 j])/2

3. P[i j] stores this calculated
average as its new value.

Procedure for Down-scaling

1. Distribute R-values of pixels over the
processors s.t. pixel[x y] ->
P[x y]

2. For i in 0..k do

a. Perform Horizontal Merging.

b. Perform Vertical Merging.

where k = log(X)

Procedure for Vertical Merging

1. Every Processor, P[i j], gets
values of P[2i j] and
P[2i+1 j]

2. P[i j] calculates the average of
the 2 values,
(P[2i j] + P[2i+1 j])/2

3. P[i j] stores this calculated
average as its new value.

Procedure for Down-scaling

1. Distribute R-values of pixels over the
processors s.t. pixel[x y] ->
P[x y]

2. For i in 0..k do

a. Perform Horizontal Merging .

b. Perform Vertical Merging.

where k = log(X)

Procedure for Down-scaling

1. Distribute R-values of pixels over the
processors s.t. pixel[x y] ->
P[x y]

2. For i in 0..k do

a. Perform Horizontal Merging.

b. Perform Vertical Merging .

where k = log(X)

Coarse-grained
algorithm

Coarse-grained Algorithm
● Assuming we have X * Y image, and K * K processors.

● We create a (X/K) * (Y/K) sub-image on each processor.

● We assign each pixel of the sub-image global indices (these are the indices of the pixel w.r.t.

the original image).

● Now, we can represent a global 2-D array `

● Then we start performing parallel downscaling.

● Each pixel on the global array performs horizontal and vertical merging.

● This happens by sending sequence of messages of pixel values, and new indices from one

processor to other processors.

Implementation Details
● When ever 2 processors have to exchange pixel values they exchange pixel values in row

major ordering. (i.e. first processor prioritises pixel (0,0) then (0,1) then (0,2) and so on). This

way we get a unique index of message exchanges that every 2 pair of processors can follow.

(this is because in MPI both receiving and sending processors have to initiate message

exchange synchronously).

● But using this method of communication increases the complexity of the communication

operation to O((X/K) * (Y/K)) = O(X2) which is very bad! compared to log time

complexity of merge operations.

Optimisation!!!
● To counter this, we maintain message queues for each processor that stores all the pixel

values it has to exchange with other processors.

● Using message queues, we exchange the entire message queue between processors at once

which reduces the time complexity of communication operation to O(K2).

● This not only reduces the number of messages between processors to one, but it also forces

constant number of messages that the whole grid exchanges!!!

Results

For 100M pixel (10K * 10K)(13 iterations) image with 100 color-dimensions

Processors
Avg Time across
colors (sec)

1 6.680345

4 2.624891

9 0.936577

16 0.730853

25 0.390719

36 0.264356

49 0.165643

64 0.127688

81 0.11453

100 0.096347

121 0.099478

For 100M pixel (10K * 10K)(13 iterations) image with 100 color-dimensions

For 100M pixel (10K * 10K)(13 iterations) image with 100 color-dimensions

References
1. Algorithms, Sequential and Parallel: A Unified Approach – Russ Miller and Laurence Boxer. 3rd Edition.

Takeaways
1. Programming in MPI.

2. Concurrency Debugging.

3. Optimizing cross process communication using messaging protocols.

4. SLURM and linux CI/CD.

5. Cost optimizing parallel algorithms by data-driven approach.

Questions

Thank You!

