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Proposed Parallel Implementation

e Split your data into two halves according to the splitter you have

* Check to see if you are in the upper or lower half of processes
for your division (EX: if you are >31 or <=31 for 64 processes)

* If you are in the upper half send your lower data to your partner
in the lower half, and vice versa for if you are in the lower half.

* Combine the new data on each process.

* Repeat, step 1 going down each significant bit as you recurse.



Visualized...
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How Data Was Gathered

* Run On CCR using the intel-mpi/4.1.3 module
* Ran each Data Point/process number pair 6 times

* Got a time output from each process and averaged them
together for one runtime

* Averaged together the 6 runtime totals to get the final average
runtime for the chart

* Requested exclusive process by running

fisbatch --nodes=8 --ntasks-per-node=8 --time=2:30:00
— partition=general-compute --qos=general-compute --exclusive
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Observations

* Code can likely be optimized further because of the data trends

* Sending overhead is large, so that can affect results depending
on data distribution

* Data distribution is not optimal, as in you cannot tell how much
data will end up on each process

* Areason that the two processes could run faster than the higher
processes is due to it being less steps to separate the data into
its halves as in the implementation the maximum amount of runs
IS logi0(N) where n is the number of processes or if there is 1
process per division, as such for the lower amount of processes,

they will finish in fewer steps.
12



tﬁ University at Buffalo The state University of New York

References used during project

* Algorithms Sequential and Parallel: A Unified Approach

- Russ Miller & Laurence Boxer
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