PARALLEL
QUICKSORT

Prepared and Presented by: Steven Pittaro

% University at Buffalo The state University of New York

tﬁ University at Buffalo The state University of New York

Parallel Implementation

Amdahl Time Charts

Gustafson's Time Charts

Observations

Questions

tﬂ University at Buffalo The state University of New York

Proposed Parallel Implementation

e Split your data into two halves according to the splitter you have

* Check to see if you are in the upper or lower half of processes
for your division (EX: if you are >31 or <=31 for 64 processes)

* If you are in the upper half send your lower data to your partner
in the lower half, and vice versa for if you are in the lower half.

* Combine the new data on each process.

* Repeat, step 1 going down each significant bit as you recurse.

Visualized...

tﬂ University at Buffalo The state University of New York

How Data Was Gathered

* Run On CCR using the intel-mpi/4.1.3 module
* Ran each Data Point/process number pair 6 times

* Got a time output from each process and averaged them
together for one runtime

* Averaged together the 6 runtime totals to get the final average
runtime for the chart

* Requested exclusive process by running

fisbatch --nodes=8 --ntasks-per-node=8 --time=2:30:00
— partition=general-compute --qos=general-compute --exclusive

tﬁ University at Buffalo The state University of New York

500,000 Data Points

500000 Time Graph Amdahl

0.20 —— Averages
2 0.04631
4 0.137358 o
8 0.177292
@ 0.10
16 0.102867 g
32 0.0833 -
64 0.126603 0.00
2 4 8 16 32 64
Processes

tﬁ University at Buffalo The state University of New York

1,000,000 Data Points

1000000 Time Graph Amdahl

2 006 1422 0.25 —— Averages

4 0.168529 0.20

8 0.202968 g o
16 0.225062 T o
32 0.121137 .
64 0.136793 .

2 4 8 16 32 64
Processes

tﬁ University at Buffalo The state University of New York

2.000,000 Data Points

2000000 Time Graph Amdahl

2 0.078498 o — Averages
4 0.208954 0.3
8 0.299576 5
@ 0.2
16 0.271205 g
=
32 0.233671 01
64 0.197424 00
| 2 4 8 16 32 64
Processes

tﬁ University at Buffalo The state University of New York

500,000 Data Points

2

8
16
32
64

0.0175
0.03
0.0375
0.072188
0.101667
0.133385

Time (Seconds)

0.15

0.10

0.05

0.00

500000 Time Graph Gustafson

2 4 8 16

Processes

32

64

— Averages

tﬁ University at Buffalo The state University of New York

1,000,000 Data Points

16
32
64

0.024167
0.045
0.064792
0.114583
0.16
0.209714

Time (Seconds)

0.25

0.20

0.15

0.10

0.05

0.00

1000000 Time Graph Gustafson

2 4 8 16

Processes

32

64

—— Averages

10

tﬁ University at Buffalo The state University of New York

2.000,000 Data Points

2000000 Time Graph Gustafson
0.4

— Averages
2 0.04
4 0.082083 o3

_g
8 0.121667 S

@ 0.2
16 0.19125 g

=
32 0.240887 0.1
64 0.351094 .

| 2 4 8 16 32 64
Processes

11

té University at Buffalo The state University of New York

Observations

* Code can likely be optimized further because of the data trends

* Sending overhead is large, so that can affect results depending
on data distribution

* Data distribution is not optimal, as in you cannot tell how much
data will end up on each process

* Areason that the two processes could run faster than the higher
processes is due to it being less steps to separate the data into
its halves as in the implementation the maximum amount of runs
IS logi0(N) where n is the number of processes or if there is 1
process per division, as such for the lower amount of processes,

they will finish in fewer steps.
12

tﬁ University at Buffalo The state University of New York

References used during project

* Algorithms Sequential and Parallel: A Unified Approach

- Russ Miller & Laurence Boxer

13

QUESTIONS?

-[é University at Buffalo The state University of New York

