Parallel Merge Sort
Using MPI

Instructor: Dr. Russ Miller

Prepared by Yihao Liu

tﬁ University at Buffalo The State University of New York

- —
-
\ ~ -~

-y
-
-

% University at Buffalo The state University of New York

Agenda

@ Scquential Merge Sort
@ Parallel algorithm

@ Experimentation in CCR

@ Obtained results and analysis

@ Conclusion

- —
-
\ ~ -~

4
1
1
1
1
1
1
\
\

% University at Buffalo The state University of New York

Sequential Merge Sort

mergesort(int[] a, int left, int right)

1. If the input sequence has fewer than two / e
elements, return

2. Partition the input sequence into two il il iy il 2

halves: mid = (left + right)/ 2 v/ \ / \ \

3. Sort the two subsequences using the same | ° 3 8 AN 3 2 | -
algorithm: \ / \i / \ / ,
mergesort(a, left, mid-1) 3|5 4|8 3|6 2
mergesort(a,mid,right)

4. Merge the two sorted subsequences to 12153 P { s

form the output sequence

% University at Buffalo The state University of New York

Parallel merge sort

Node 0

Node 0

{

0

Node 2

0

0

Node 0

Node 0

Node 1

Node 2

Node 3

Node 4

Node 4

0

{

Node 6

{

0

Node 4

Node 5

Node 6

Node 7

% University at Buffalo The state University of New York

Parallel Mergesort Algorithm

1. Node with rank 0 1s the host node. It computes the height of the node and get the entire
dataset

2. Node 0 mitiates the parallel merge operation

3. For internal nodes (height > 0), including node 0. Divide the data in half and send the
right half to the right child as computed in previous slide. Recursively call parallel merge
operation for the left half on the same node. Also, receive the sorted data from right child.
Merge the sorted left and right halves.

4. If it is a leaf node, just do internal sorting
5. Send the sorted data to parent node

6. Finally, node 0 will have the entire sorted result

.[é University at Buffalo The state University of New York

Experimentation in CCR: SBATCH script

mpirun —np 4 ./merge Arraysize

% University at Buffalo The state University of New York

Result

1. For some data size, plot processing time vs number of nodes
a. Tested on 3 different data sizes: 1M, 10M, 1 billion

b. Number of nodes: 2, 4, 8, 16, 32, 64

3. Plot graphs that depict for a particular number of processor and show how
the runtime is affected with data size

% University at Buffalo The state University of New York

Runtime Vs Number of nodes for N = 1 million

Data size : 1 million

Processors
2

4

8

16

32

64

Time

0.1411
0.1023
0.0756
0.0638
0.0542
0.0553

0.14 4

0.12 1

0.1 1

0.08

0.06

0.04

T
8 16
Processors

O Time

32

64

% University at Buffalo The state University of New York

Runtime Vs Number of nodes for N = 10 million

:
Processors Time 15
2 1.6326
4 1.0274
8 0.7123
16 0.5619
32 0.4136

64 0.3891

Processors

% University at Buffalo The state University of New York

Runtime Vs Number of nodes for N = 1 billion

Data size : 1 billion

Processors
2

4

8

16

32

64

Time
168.5064
95.7923
78.1659
70.7653
68.4249
69.9256

180 —

160

140

120

100

80 A

60

40

T
8 16
Processors

O Time

32

64

% University at Buffalo The state University of New York

‘o)
Runtime Vs Data size for P =2 and 64

Time for node 2 | Time for node 64 150

1000000 0.1411 0.0553 100

10000000 1.6326 0.3891 o

1000000000 168.5064 69.9256
—— Time for node 2 (- Time for node 64
Q

% University at Buffalo The state University of New York

Conclusion

1) One task was associated with one node. Thus, every physical server initiated
one process only.

2) According to the results, parallelization can be efficient to a particular
number of processors/nodes and reduce the time of sorting. In some

3) However, as the number of nodes increases, the cost from the
communication between the nodes will also increase. Therefore, the efficiency
will be hampered.

% University at Buffalo The state University of New York

Thanks

