
‘-

1

Parallel Merge Sort 
Using MPI

Instructor: Dr. Russ Miller

Prepared by Yihao Liu



‘-

2

Agenda

● Sequential Merge Sort

● Parallel algorithm

● Experimentation in CCR

● Obtained results and analysis

● Conclusion



‘-

3

Sequential Merge Sort

mergesort(int[] a, int left, int right)

1. If the input sequence has fewer than two 
elements, return
2. Partition the input sequence into two 
halves: mid = (left + right)/ 2
3. Sort the two subsequences using the same
algorithm:
mergesort(a, left, mid-1)
mergesort(a,mid,right)
4. Merge the two sorted subsequences to 
form the output sequence



‘-

4

Parallel merge sort



‘-

5

1. Node with rank 0 is the host node. It computes the height of the node and get the entire 
dataset
2. Node 0 initiates the parallel merge operation
3. For internal nodes (height > 0), including node 0. Divide the data in half and send the 
right half to the right child as computed in previous slide. Recursively call parallel merge 
operation for the left half on the same node. Also, receive the sorted data from right child. 
Merge the sorted left and right halves.
4. If it is a leaf node, just do internal sorting
5. Send the sorted data to parent node
6. Finally, node 0 will have the entire sorted result

Parallel Mergesort Algorithm



‘-

6

‘-

Experimentation in CCR: SBATCH script

mpirun –np 4 ./merge Arraysize



‘-

7

1. For some data size, plot processing time vs number of nodes
a. Tested on 3 different data sizes: 1M, 10M, 1 billion
b. Number of nodes: 2, 4, 8, 16, 32, 64
3. Plot graphs that depict for a particular number of processor and show how 
the runtime is affected with data size

Result



‘-

8

Runtime Vs Number of nodes for N = 1 million

Data size : 1 million

Processors Time

2 0.1411

4 0.1023

8 0.0756

16 0.0638

32 0.0542

64 0.0553



‘-

9

Runtime Vs Number of nodes for N = 10 million

Data size : 10 million

Processors Time

2 1.6326

4 1.0274

8 0.7123

16 0.5619

32 0.4136

64 0.3891



‘-

10

Data size : 1 billion

Processors Time

2 168.5064

4 95.7923

8 78.1659

16 70.7653

32 68.4249

64 69.9256

Runtime Vs Number of nodes for N = 1 billion



‘-

11

Data size Time for node 2 Time for node 64

1000000 0.1411 0.0553

10000000 1.6326 0.3891

1000000000 168.5064 69.9256

Runtime Vs Data size for P = 2 and 64



‘-

12

1) One task was associated with one node. Thus, every physical server initiated 
one process only.
2) According to the results, parallelization can be efficient to a particular 
number of processors/nodes and reduce the time of sorting. In some 
3) However, as the number of nodes increases, the cost from the 
communication between the nodes will also increase. Therefore, the efficiency 
will be hampered.

Conclusion



‘-

13

Thanks


