Parallel Merge Sort
Using MPI
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Agenda

@ Scquential Merge Sort
@ Parallel algorithm

@ Experimentation in CCR

@ Obtained results and analysis

@ Conclusion
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Sequential Merge Sort

mergesort(int[] a, int left, int right)

1. If the input sequence has fewer than two / e
elements, return

2. Partition the input sequence into two il il iy il 2

halves: mid = (left + right)/ 2 v/ \ / \ \

3. Sort the two subsequences using the same | ° 3 8 AN 3 2 | -
algorithm: \ / \i / \ / ,
mergesort(a, left, mid-1) 3|5 4|8 3|6 2
mergesort(a,mid,right)

4. Merge the two sorted subsequences to 12153 P { s

form the output sequence
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Parallel merge sort
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Parallel Mergesort Algorithm

1. Node with rank 0 1s the host node. It computes the height of the node and get the entire
dataset

2. Node 0 mitiates the parallel merge operation

3. For internal nodes (height > 0), including node 0. Divide the data in half and send the
right half to the right child as computed in previous slide. Recursively call parallel merge
operation for the left half on the same node. Also, receive the sorted data from right child.
Merge the sorted left and right halves.

4. If it is a leaf node, just do internal sorting
5. Send the sorted data to parent node

6. Finally, node 0 will have the entire sorted result
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Experimentation in CCR: SBATCH script

mpirun —np 4 ./merge Arraysize
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Result

1. For some data size, plot processing time vs number of nodes
a. Tested on 3 different data sizes: 1M, 10M, 1 billion

b. Number of nodes: 2, 4, 8, 16, 32, 64

3. Plot graphs that depict for a particular number of processor and show how
the runtime is affected with data size



% University at Buffalo The state University of New York

Runtime Vs Number of nodes for N = 1 million

Data size : 1 million
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Runtime Vs Number of nodes for N = 10 million

:
Processors Time 15
2 1.6326
4 1.0274
8 0.7123
16 0.5619
32 0.4136

64 0.3891

Processors
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Runtime Vs Number of nodes for N = 1 billion

Data size : 1 billion
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‘o)
Runtime Vs Data size for P =2 and 64

Time for node 2 | Time for node 64 150

1000000 0.1411 0.0553 100

10000000 1.6326 0.3891 o

1000000000 168.5064 69.9256
—— Time for node 2 (- Time for node 64
Q
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Conclusion

1) One task was associated with one node. Thus, every physical server initiated
one process only.

2) According to the results, parallelization can be efficient to a particular
number of processors/nodes and reduce the time of sorting. In some

3) However, as the number of nodes increases, the cost from the
communication between the nodes will also increase. Therefore, the efficiency
will be hampered.
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Thanks




