4/25/11

Condor and the Hadoop File
System with a Packing Problem

CSE 704 — Parallel Computing Seminar
Presenter: Philip Matuskiewicz

The Lab (Furnas 215)

35 personal computers

— Will now be referred to as nodes

— 10 AMD Semprons with 1GB of ram

— 20 Intel Pentium Dual Core Processors w/ 1GB or 2GB of ram

Connected to a router (Gretzky.cse.buffalo.edu)
— performs NAT
— Internal nodes connected on 192.168.0.0/24 subnet

1 node dedicated as head node
— Head.condor.cse.buffalo.edu
— Runs necessary services to support the flock

— Contains a network file system and the hadoop file system
namenode

34 nodes dedicated as worker nodes (for processing)

Internet
128.205.x.x Oy

The Lab

Network Topology for Furnas 215

—7 D

Dedicated Switch

O

Gretzky.cse.buffalo.edu

Connector Switch (x2) Magic.cse.buffalo.edu
Dell/NVidia Cluster

0]

4 < 17

W et

24 total Celeron Worker Nodes
Centos 5.5

Head.condor.cse.buffalo.edu
(not a Fully Qualified Domain Name)
Centos 5.5

W et

10 total Sempron Worker Nodes
Centos 5.5

Video from the lab

The head node functions as:

Network File System — “/network”

NIS (Network Information Services)
— Central login / password management

Internal DNS (Domain Name Services)
— Lookups such as head ->192.168.0.10

Internal DHCP (For ghost cast)
Condor management node
— Handles submissions of Condor Jobs to nodes on the Condor Flock

Hadoop Namenode

— Contains a lookup table mapping files to the nodes that hold those
files
Central Email Manager for the nodes on the flock

What is Condor

* Grid computing
— Installed to existing nodes

* Nodes may be on multiple networks
— Nodes on a single network is referred to as a Condor Pool
— One Condor flock can contain many pools

— A central manager node does the match making to put jobs onto free
nodes within a Condor flock

* Runs jobs during idle time on these workstations
* Cost efficient — dedicated compute nodes not required!
* Implements Failover Mechanisms Well
— High Throughput Computing
* High data movement over a long period of time
* Network latency isn’t a major factor

* Developed at the University of Wisconsin-Madison

Condor Commands

Condor_submit — submit a job to the condor
gueue

Condor_qg — view jobs submitted to the condor
gueue

Condor_rm —remove jobs from the condor
queue

Condor_compile — compile a program with the
Condor libraries for submission as a Condor Job
— For status checking during a job execution

— Supports many variants of C/C++ and Fortran

Can be ran from any node in a Condor Flock

Condor Services

Installed on all nodes
— MASTER — Monitors the other daemons
— STARTD —responsible for starting / running a job

— SCHEDD - responsible for queuing jobs to be ran on
the node

Installed on the Head node:

— COLLECTOR —collects the status information of all the
nodes on a Condor flock

— NEGOTIATOR — Places jobs onto nodes as availability
permits

Example Condor Submission File

Universe = standard
Executable = pack
Output = pack.out
Log = pack.log
arguments =11

Requirements = (Memory > 0 && TotalMemory >=
(512))

Notification = Never
gueue

Condor results

Condor executes a job on other nodes

— Scripts that have dependencies on certain local files are
impacted (hence NFS)

The job runs on the next available node
Output from STDOUT is placed into the output file
An email is sent to the user if notification is enabled

What is Hadoop

Distributed by the Apache Foundation

Software framework that supports data-
intensive distributed computing

— Inspired by Google’s File System and MapReduce
Implemented on Sun’s version of Java
Highly Scalable

Hadoop File System (HDFS) in the lab

 NFS at “/network” is centralized
— Bottleneck on the network, Condor is writing /
reading from NFS concurrently
* The Hadoop File System is a Distributed File
System

— Files are replicated to all of the worker nodes
» All the files are locally available

— Technically, the network bandwidth should be
eliminated!

 The HDFS is mounted as “/hdfs” using fuse-dfs
— Enables normal directory access to the HDFS

The 2-D Bin Packing Problem

 Take many rectangles of random sizes and
place into bins of a uniform size

— Minimize the number of bins (optimization)

— Parallel and Orthogonal trajectory only
* 0 and 90 degree rotation

* Problem:

* Take 340,000 rectangles and optimize them

— 10,000 rectangles per node
— Rectangles generated randomly

The 2-D Bin Packing Problem Pictured

1
1 I
Bab

I

1
2
:

Algorithm Overview For the Lab

* Generate 340,000 rectangles and place 10,000 per file
(34 files)

* On each worker node, optimize 10,000 rectangles as
follows

— For each rectangle (represented as an object), get the
width and height

* Take the smaller of the width and height and iterate through the
bins, if a bin can hold the rectangle, place the rectangle in the bin

* Update the rectangle’s orientation and the bin’s availability
* Move onto the next rectangle

* Algorithm described is the First Fit algorithm from

Garey and Johnson’s book — The Thory of NP-
Completeness

Results on NFS vs. HDFS

NFS HDFS

e Bins: 42118 * Bins: 41644

e Width: 1868356 * Width: 1747826
e Height: 50 * Height: 50

e Area: 93417800 * Area: 87391300

« Time (Seconds): 6.665628 * Time (Seconds): 27.86374

-Time calculated using C timer accurate to milliseconds.
- Files and algorithm executable stored on the file system directly

30
Actual Runtime (in seconds)

25
20
15

10 B Actual Runtime (in seconds)

5 I

0
NFS Hadoop FS

Unexpected Results?

e All the files are local!

— The problem is that Fuse-DFS was accessing them

* Hadoop has internal mechanisms that schedule jobs to run on
nodes where the files are present and those mechanisms instruct
the machines to locally access the required files for the job runs

* There was an abnormal amount of network traffic from the worker
nodes, logs show massive file requests across the entire Condor
flock during the HDFS test run

* Hadoop is ideal only when programming and submitting using its
built in mechanisms

 HDFS does not support the executable bit, applications
cannot be ran directly from HDFS.

— Work around used for this project was to copy the packing
algorithm executable to the /tmp directory and execute it
there, all the other files were directly accessed on the

HDFS.

Suggestions

* Copy the required files into the /tmp or /
scratch directory and run from there, then
transfer back to NFS or HDFS

Sources

* Phil’s Paper Titled - Using Condor to solve a
Bin Packing Problem

* http://hadoop.apache.org/
e http://www.cs.wisc.edu/condor/

Questions?

