
Condor	
  and	
  the	
  Hadoop	
  File	
  
System	
  with	
  a	
  Packing	
  Problem	
  

CSE	
  704	
  –	
  Parallel	
  Compu@ng	
  Seminar	
  
Presenter:	
  	
  Philip	
  Matuskiewicz	
  

4/25/11	
  



The	
  Lab	
  (Furnas	
  215)	
  
•  35	
  personal	
  computers	
  
– Will	
  now	
  be	
  referred	
  to	
  as	
  nodes	
  
–  10	
  AMD	
  Semprons	
  with	
  1GB	
  of	
  ram	
  
–  20	
  Intel	
  Pen@um	
  Dual	
  Core	
  Processors	
  w/	
  1GB	
  or	
  2GB	
  of	
  ram	
  

•  Connected	
  to	
  a	
  router	
  (Gretzky.cse.buffalo.edu)	
  
–  performs	
  NAT	
  	
  
–  Internal	
  nodes	
  connected	
  on	
  192.168.0.0/24	
  subnet	
  

•  1	
  node	
  dedicated	
  as	
  head	
  node	
  
–  Head.condor.cse.buffalo.edu	
  
–  Runs	
  necessary	
  services	
  to	
  support	
  the	
  flock	
  
–  Contains	
  a	
  network	
  file	
  system	
  and	
  the	
  hadoop	
  file	
  system	
  
namenode	
  

•  34	
  nodes	
  dedicated	
  as	
  worker	
  nodes	
  (for	
  processing)	
  



The	
  Lab	
  
Internet

128.205.x.x
Network	
  Topology	
  for	
  Furnas	
  215

Kirby

Magic.cse.buffalo.edu
Dell/NVidia	
  Cluster

Gretzky.cse.buffalo.edu

Dedicated	
  Switch

Head.condor.cse.buffalo.edu
(not	
  a	
  Fully	
  Qualified	
  Domain	
  Name)

Centos	
  5.5

Connector	
  Switch	
  (x2)

24	
  total	
  Celeron	
  Worker	
  Nodes
Centos	
  5.5

10	
  total	
  Sempron	
  Worker	
  Nodes
Centos	
  5.5



Video	
  from	
  the	
  lab	
  



The	
  head	
  node	
  func@ons	
  as:	
  
•  Network	
  File	
  System	
  –	
  “/network”	
  
•  NIS	
  (Network	
  Informa@on	
  Services)	
  

–  Central	
  login	
  /	
  password	
  management	
  
•  Internal	
  DNS	
  (Domain	
  Name	
  Services)	
  

–  Lookups	
  such	
  as	
  head	
  -­‐>	
  192.168.0.10	
  
•  Internal	
  DHCP	
  (For	
  ghost	
  cast)	
  
•  Condor	
  management	
  node	
  

–  Handles	
  submissions	
  of	
  Condor	
  Jobs	
  to	
  nodes	
  on	
  the	
  Condor	
  Flock	
  
•  Hadoop	
  Namenode	
  

–  Contains	
  a	
  lookup	
  table	
  mapping	
  files	
  to	
  the	
  nodes	
  that	
  hold	
  those	
  
files	
  

•  Central	
  Email	
  Manager	
  for	
  the	
  nodes	
  on	
  the	
  flock	
  



What	
  is	
  Condor	
  
•  Grid	
  compu@ng	
  
–  Installed	
  to	
  exis@ng	
  nodes	
  

•  Nodes	
  may	
  be	
  on	
  mul@ple	
  networks	
  	
  
–  Nodes	
  on	
  a	
  single	
  network	
  is	
  referred	
  to	
  as	
  a	
  Condor	
  Pool	
  
–  One	
  Condor	
  flock	
  can	
  contain	
  many	
  pools	
  
–  A	
  central	
  manager	
  node	
  does	
  the	
  match	
  making	
  to	
  put	
  jobs	
  onto	
  free	
  
nodes	
  within	
  a	
  Condor	
  flock	
  

•  Runs	
  jobs	
  during	
  idle	
  @me	
  on	
  these	
  worksta@ons	
  
•  Cost	
  efficient	
  –	
  dedicated	
  compute	
  nodes	
  not	
  required!	
  
•  Implements	
  Failover	
  Mechanisms	
  Well	
  

– High	
  Throughput	
  Compu@ng	
  
•  High	
  data	
  movement	
  over	
  a	
  long	
  period	
  of	
  @me	
  
•  Network	
  latency	
  isn’t	
  a	
  major	
  factor	
  

•  Developed	
  at	
  the	
  University	
  of	
  Wisconsin-­‐Madison	
  



Condor	
  Commands	
  
•  Condor_submit	
  –	
  submit	
  a	
  job	
  to	
  the	
  condor	
  
queue	
  

•  Condor_q	
  –	
  view	
  jobs	
  submimed	
  to	
  the	
  condor	
  
queue	
  

•  Condor_rm	
  –	
  remove	
  jobs	
  from	
  the	
  condor	
  
queue	
  

•  Condor_compile	
  –	
  compile	
  a	
  program	
  with	
  the	
  
Condor	
  libraries	
  for	
  submission	
  as	
  a	
  Condor	
  Job	
  
–  For	
  status	
  checking	
  during	
  a	
  job	
  execu@on	
  
–  Supports	
  many	
  variants	
  of	
  C/C++	
  and	
  Fortran	
  

•  Can	
  be	
  ran	
  from	
  any	
  node	
  in	
  a	
  Condor	
  Flock	
  



Condor	
  Services	
  

Installed	
  on	
  all	
  nodes	
  
– MASTER	
  –	
  Monitors	
  the	
  other	
  daemons	
  
–  STARTD	
  –	
  responsible	
  for	
  star@ng	
  /	
  running	
  a	
  job	
  
–  SCHEDD	
  –	
  responsible	
  for	
  queuing	
  jobs	
  to	
  be	
  ran	
  on	
  
the	
  node	
  

Installed	
  on	
  the	
  Head	
  node:	
  
–  COLLECTOR	
  –	
  collects	
  the	
  status	
  informa@on	
  of	
  all	
  the	
  
nodes	
  on	
  a	
  Condor	
  flock	
  

– NEGOTIATOR	
  –	
  Places	
  jobs	
  onto	
  nodes	
  as	
  availability	
  
permits	
  



Example	
  Condor	
  Submission	
  File	
  

Universe	
  =	
  standard	
  
Executable	
  =	
  pack	
  
Output	
  =	
  pack.out	
  
Log	
  =	
  pack.log	
  
arguments	
  =	
  11	
  
Requirements	
  =	
  (	
  Memory	
  >	
  0	
  &&	
  TotalMemory	
  >=	
  
(512)	
  )	
  
No@fica@on	
  =	
  Never	
  
queue	
  
	
  



Condor	
  results	
  

•  Condor	
  executes	
  a	
  job	
  on	
  other	
  nodes	
  
– Scripts	
  that	
  have	
  dependencies	
  on	
  certain	
  local	
  files	
  are	
  
impacted	
  (hence	
  NFS)	
  

•  The	
  job	
  runs	
  on	
  the	
  next	
  available	
  node	
  
•  Output	
  from	
  STDOUT	
  is	
  placed	
  into	
  the	
  output	
  file	
  
•  An	
  email	
  is	
  sent	
  to	
  the	
  user	
  if	
  no@fica@on	
  is	
  enabled	
  



What	
  is	
  Hadoop	
  

•  Distributed	
  by	
  the	
  Apache	
  Founda@on	
  
•  Soqware	
  framework	
  that	
  supports	
  data-­‐
intensive	
  distributed	
  compu@ng	
  
–  Inspired	
  by	
  Google’s	
  File	
  System	
  and	
  MapReduce	
  

•  Implemented	
  on	
  Sun’s	
  version	
  of	
  Java	
  
•  Highly	
  Scalable	
  	
  



Hadoop	
  File	
  System	
  (HDFS)	
  in	
  the	
  lab	
  

•  NFS	
  at	
  “/network”	
  is	
  centralized	
  
– Bomleneck	
  on	
  the	
  network,	
  Condor	
  is	
  wri@ng	
  /	
  
reading	
  from	
  NFS	
  concurrently	
  

•  The	
  Hadoop	
  File	
  System	
  is	
  a	
  Distributed	
  File	
  
System	
  
– Files	
  are	
  replicated	
  to	
  all	
  of	
  the	
  worker	
  nodes	
  

•  All	
  the	
  files	
  are	
  locally	
  available	
  
– Technically,	
  the	
  network	
  bandwidth	
  should	
  be	
  
eliminated!	
  

•  The	
  HDFS	
  is	
  mounted	
  as	
  “/hdfs”	
  using	
  fuse-­‐dfs	
  
– Enables	
  normal	
  directory	
  access	
  to	
  the	
  HDFS	
  

	
  



The	
  2-­‐D	
  Bin	
  Packing	
  Problem	
  

•  Take	
  many	
  rectangles	
  of	
  random	
  sizes	
  and	
  
place	
  into	
  bins	
  of	
  a	
  uniform	
  size	
  
– Minimize	
  the	
  number	
  of	
  bins	
  (op@miza@on)	
  
– Parallel	
  and	
  Orthogonal	
  trajectory	
  only	
  	
  

•  0	
  and	
  90	
  degree	
  rota@on	
  
•  Problem:	
  	
  
•  Take	
  340,000	
  rectangles	
  and	
  op@mize	
  them	
  
– 10,000	
  rectangles	
  per	
  node	
  
– Rectangles	
  generated	
  randomly	
  



The	
  2-­‐D	
  Bin	
  Packing	
  Problem	
  Pictured	
  



Algorithm	
  Overview	
  For	
  the	
  Lab	
  
•  Generate	
  340,000	
  rectangles	
  and	
  place	
  10,000	
  per	
  file	
  
(34	
  files)	
  

•  On	
  each	
  worker	
  node,	
  op@mize	
  10,000	
  rectangles	
  as	
  
follows	
  
–  For	
  each	
  rectangle	
  (represented	
  as	
  an	
  object),	
  get	
  the	
  
width	
  and	
  height	
  
•  Take	
  the	
  smaller	
  of	
  the	
  width	
  and	
  height	
  and	
  iterate	
  through	
  the	
  
bins,	
  if	
  a	
  bin	
  can	
  hold	
  the	
  rectangle,	
  place	
  the	
  rectangle	
  in	
  the	
  bin	
  

•  Update	
  the	
  rectangle’s	
  orienta@on	
  and	
  the	
  bin’s	
  availability	
  
•  Move	
  onto	
  the	
  next	
  rectangle	
  

•  Algorithm	
  described	
  is	
  the	
  First	
  Fit	
  algorithm	
  from	
  
Garey	
  and	
  Johnson’s	
  book	
  –	
  The	
  Thory	
  of	
  NP-­‐
Completeness	
  



Results	
  on	
  NFS	
  vs.	
  HDFS	
  

•  Bins:	
  42118	
  
•  Width:	
  1868356	
  	
  
•  Height:	
  50	
  	
  
•  Area:	
  93417800	
  	
  
•  Time	
  (Seconds):	
  6.665628	
  

•  Bins:	
  41644	
  
•  Width:	
  1747826	
  	
  
•  Height:	
  50	
  	
  
•  Area:	
  87391300	
  
•  Time	
  (Seconds):	
  27.86374	
  

NFS	
   HDFS	
  

-­‐Time	
  calculated	
  using	
  C	
  @mer	
  accurate	
  to	
  milliseconds.	
  
-­‐	
  Files	
  and	
  algorithm	
  executable	
  stored	
  on	
  the	
  file	
  system	
  directly	
  

0	
  

5	
  

10	
  

15	
  

20	
  

25	
  

30	
  

NFS	
   Hadoop	
  FS	
  

Actual	
  Run*me	
  (in	
  seconds)	
  

Actual	
  Run@me	
  (in	
  seconds)	
  



Unexpected	
  Results?	
  
•  All	
  the	
  files	
  are	
  local!	
  
–  The	
  problem	
  is	
  that	
  Fuse-­‐DFS	
  was	
  accessing	
  them	
  

•  Hadoop	
  has	
  internal	
  mechanisms	
  that	
  schedule	
  jobs	
  to	
  run	
  on	
  
nodes	
  where	
  the	
  files	
  are	
  present	
  and	
  those	
  mechanisms	
  instruct	
  
the	
  machines	
  to	
  locally	
  access	
  the	
  required	
  files	
  for	
  the	
  job	
  runs	
  

•  There	
  was	
  an	
  abnormal	
  amount	
  of	
  network	
  traffic	
  from	
  the	
  worker	
  
nodes,	
  logs	
  show	
  massive	
  file	
  requests	
  across	
  the	
  en@re	
  Condor	
  
flock	
  during	
  the	
  HDFS	
  test	
  run	
  

•  Hadoop	
  is	
  ideal	
  only	
  when	
  programming	
  and	
  submitng	
  using	
  its	
  
built	
  in	
  mechanisms	
  

•  HDFS	
  does	
  not	
  support	
  the	
  executable	
  bit,	
  applica@ons	
  
cannot	
  be	
  ran	
  directly	
  from	
  HDFS.	
  
– Work	
  around	
  used	
  for	
  this	
  project	
  was	
  to	
  copy	
  the	
  packing	
  
algorithm	
  executable	
  to	
  the	
  /tmp	
  directory	
  and	
  execute	
  it	
  
there,	
  all	
  the	
  other	
  files	
  were	
  directly	
  accessed	
  on	
  the	
  
HDFS.	
  



Sugges@ons	
  

•  Copy	
  the	
  required	
  files	
  into	
  the	
  /tmp	
  or	
  /
scratch	
  directory	
  and	
  run	
  from	
  there,	
  then	
  
transfer	
  back	
  to	
  NFS	
  or	
  HDFS	
  



Sources	
  

•  Phil’s	
  Paper	
  Titled	
  -­‐	
  Using	
  Condor	
  to	
  solve	
  a	
  
Bin	
  Packing	
  Problem	
  

•  hmp://hadoop.apache.org/	
  
•  hmp://www.cs.wisc.edu/condor/	
  



Ques@ons?	
  


