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Background

● Want to find a way of utilizing CUDA to help 
improve times for computing digits of pi

● First attempt used numerical integration
– Proved to be unhelpful

– Rate of Convergence
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Obstacles

● Original series converged too slowly

● Only double precision supported under 
CUDA 1.3 compute capability
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Overcoming our Obstacles

● Found new series with fast convergence
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Next Steps of Action

● Implemented new series
– Sum converged to full precision in 8 itera-

tions

– Looked for higher precision library
● Why has no one written one for CUDA?
● We will soon find out...
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Implementing Higher Precision

● Started with sequential C
● Modeled after IEEE 754 floating point 

specs
● Left precision as #define variable
● Was able to compute precisions up to 2600 

integers per number on a worker node
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Stop...  CUDA Time!

● Compiled vanilla C source in nvcc CUDA 
compiler

● Several issues
– Incompatible low-level memory hacks

– CUDA functions using structs are inlined

– Limited CUDA memory, registers
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CUDA Difficulties

● Replaced memory hacks with new memory 
hacks  (maximum memset, extracting bits)

● Other issues not satisfyingly resolvable
– Inlining →10 minute compile time

– Executable size neared 1MB

– Limited shared memory → limited precision
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Other Difficulties

● Using higher precisions caused the 
compiler to simply crash

● Found precision = 12 uses maximum 
number of CUDA registers

● Nowhere near the capability of the 
sequential code
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Results Cont.

● After the usual 6-8 second CUDA 
initialization time, code ran far faster than 
sequential equivalent (up to number 
parallel processors)

● Asymptotic behavior was as desired, even 
though the approximation wasn't as good 
as desired.
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Accuracy of Approximation
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CUDA Runtime vs Number of Sum Terms

Log Scale!
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Conclusions

● CUDA is not well-suited to problems which 
require a moderate amount of memory

● For pure computation, CUDA offers 
enormous speedups through parallelism

● ≈3.14
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