
 Dan Padgett 12/17/2009

Computation of Pi using CUDA

Dan Padgett
University at Buffalo

 Dan Padgett 12/17/2009

Background

● Want to find a way of utilizing CUDA to help
improve times for computing digits of pi

● First attempt used numerical integration
– Proved to be unhelpful

– Rate of Convergence

 Dan Padgett 12/17/2009

Obstacles

● Original series converged too slowly

● Only double precision supported under
CUDA 1.3 compute capability

 Dan Padgett 12/17/2009

Overcoming our Obstacles

● Found new series with fast convergence

=∑
i=0

∞

 1

16i 
4

8i1
−

2
8i4

−
1

8i5
−

1
8i6 

 Dan Padgett 12/17/2009

Next Steps of Action

● Implemented new series
– Sum converged to full precision in 8 itera-

tions

– Looked for higher precision library
● Why has no one written one for CUDA?
● We will soon find out...

 Dan Padgett 12/17/2009

Implementing Higher Precision

● Started with sequential C
● Modeled after IEEE 754 floating point

specs
● Left precision as #define variable
● Was able to compute precisions up to 2600

integers per number on a worker node

 Dan Padgett 12/17/2009

Stop... CUDA Time!

● Compiled vanilla C source in nvcc CUDA
compiler

● Several issues
– Incompatible low-level memory hacks

– CUDA functions using structs are inlined

– Limited CUDA memory, registers

 Dan Padgett 12/17/2009

CUDA Difficulties

● Replaced memory hacks with new memory
hacks (maximum memset, extracting bits)

● Other issues not satisfyingly resolvable
– Inlining →10 minute compile time

– Executable size neared 1MB

– Limited shared memory → limited precision

 Dan Padgett 12/17/2009

Other Difficulties

● Using higher precisions caused the
compiler to simply crash

● Found precision = 12 uses maximum
number of CUDA registers

● Nowhere near the capability of the
sequential code

 Dan Padgett 12/17/2009

Results Cont.

● After the usual 6-8 second CUDA
initialization time, code ran far faster than
sequential equivalent (up to number
parallel processors)

● Asymptotic behavior was as desired, even
though the approximation wasn't as good
as desired.

 Dan Padgett 12/17/2009

0 20000 40000 60000 80000 100000 120000 140000

0

20

40

60

80

100

120

140

160

Summation Terms vs. Runtime

CUDA
Sequential

Summation Terms

T
im

e
 (

S
e

co
n

d
s)

 Dan Padgett 12/17/2009

Accuracy of Approximation

5 10 15 20 25 30 35

3.14159265358840000000

3.14159265358860000000

3.14159265358880000000

3.14159265358900000000

3.14159265358920000000

3.14159265358940000000

3.14159265358960000000

3.14159265358980000000

3.14159265359000000000

pi approx

Summation Terms

V
a

lu
e

 o
f A

p
p

ro
xi

m
a

tio
n

 Dan Padgett 12/17/2009

CUDA Runtime vs Number of Sum Terms

Log Scale!

1000 10000 100000 1000000

0

2

4

6

8

10

12

14

16

18

20

Summation Terms

T
im

e
 (

S
e

co
n

d
s)

 Dan Padgett 12/17/2009

Conclusions

● CUDA is not well-suited to problems which
require a moderate amount of memory

● For pure computation, CUDA offers
enormous speedups through parallelism

● ≈3.14

	Title
	Long-term Goal
	Customer Wishes
	Fulfilling Customer Needs
	Next Steps of Action
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

