
As implemented by Brady Tello
CSE710

SUNY at Buffalo
Fall 2009

MergeSort review (quick)

Parallelization strategy

 Implementation attempt 1

Mistakes in implementation attempt 1
• What I did to try and correct those mistakes

Run time analysis

What I learned

Logical flow of Merge Sort

 The algorithm is largely

composed of two phases

which are readily

parallelizable

1. Split Phase

2. Join phase

 Normally, mergeSort takes

log(n) splits to break the

list into single elements

 Using the Magic cluster’s

CUDA over OpenMP over

MPI setup we should be

able to do it in 3.

1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/101/101/10

 For my testing I used 10 of the 13 Dell nodes (for no reason

besides 10 is a nice round number)

 Step 1 is to send 1/10th of the overall list to each dell node for

processing using MPI.

Data =>

Dell Nodes

MPI_SEND

Now on each Dell node, we start up the 4
Tesla co-processors on separate OpenMP
threads

1/10

#pragma openmp parallel

num_threads(4)

initDevice()

 Now we can send ¼ of the 1/10th of the original
list to each Tesla via cudaMemCpy

 At this point CUDA threads can access each
individual element and thus we can begin
merging!

1/10

cudaMemCpy(…,cudaMe

mcpyHostToDevice)

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

On each Tesla we can merge the data in

successive chunks of size 2i

 My initial plan for doing this merging was to use a single block of
threads on each device

 Initially each thread would be responsible for 2 list items, then 4,
then 8, then 16 etc.

 Since each thread is responsible for more and more each iteration,
the number of threads can also be decreased.

Grid

Example

Example

Works in theory but CUDA has a limit of 512
threads per block

NOTE: This is how I originally implemented
the algorithm and this limit caused problems

 At this point, the list on each Dell node will consist of
4 sorted lists after CUDA has done it’s work.

 We just Merge those 4 lists using a sequential Merge
function.

1st merge

2nd merge

 final merge

1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/101/10

1/10

 Now we can send the data from each Dell Node to a single Dell Node
which we will call the master node.

 As this node receives new pieces of merged data, it will just merge it
with what it has already using the same previously mentioned
sequential merge routine.

 This is a HUGE bottleneck in the execution time!!!

Dell Nodes

MPI_SEND

1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

 I tested and implemented this algorithm
using small, conveniently sized lists
which broke down nicely.

Larger datasets caused problems
because of all the special cases in the
overhead
• Spent a lot of time tracking down special cases

• Lots of “off by 1” type errors

Fixing these bugs made it work perfectly
for lists of fairly small sizes

The Tesla coprocessors on the Magic

cluster only allow 512 threads per block.

HUGE problem for my algorithm.

My algorithm isn’t very useful if it can’t

ever get to the point where it

outperforms the sequential version

 If more than 512 threads needed then add another block
 Our Tesla devices allow for 65535 blocks to be created
 Using shared memories, should be able to extend the old

algorithm to multiple blocks fairly easily

Was able to get all the math for breaking
up threads amongst blocks etc.

My algorithm now will run with lists that
are very large…
• But not correctly

There is a problem somewhere in my
CUDA kernel
• Troubleshooting the kernel has proven difficult

since we can’t easily run the debugger (that I
know of).

The algorithm is correct except for a

small error somewhere

Works partially for a limited data size

All results are an approximation to what

they would be if the code was 100%

functional

0

5

10

15

20

25

30

900 4500 9000 45000 90000 450000 900000 45000000 90000000 900000000

s
e

c
o

n
d

s

list size

Sequential merge sort run time (ci-xeon-3)

run time

Running my parallel version using 900,000,000 inputs on 9 nodes

took only 10.2 seconds (although its results were incorrect)

 This graph shows run
time versus the number
of Dell nodes which were
used to sort a list of
900,000 elements.

 Each Dell node has 2
Intel Xeon CPUs running
at 3.33GHz

 Each Tesla co-processor
has 4 GPUs

 The effective number of
processors used is:

#of Dell Nodes*2*4

 Less Processors led

to better

performance!!!

 Why?

• My list sizes are so

small that the only

element which really

impacts performance

is the parallelism

overhead.

Communication setup eats up a lot of
time
• cudaGetDeviceCount()
 Takes 3.7 seconds on average

• MPI setup takes 1 second on average

Communication itself takes up lot of
time.
• Sending large amounts of data to/from several

nodes to/from a single node using MPI was the
biggest bottleneck in the program.

1. Don’t assume a new system will be able

to handle a million threads without

incident… i.e. read the specs closely.

2. When writing a program which is

supposed to sort millions of numbers,

test it as such.

3. Unrolling a recurrence relation requires

a LOT of overhead. New respect for the

elegance of recursion.

