Mergesort over CUDA, MPI,
and openMP

As implemented by Brady Tello
CSE?10

SUNY at Buffalo

Fall 2009



Presentation overview

MergeSort review (quick)

Parallelization strateqgy
Implementation attempt 1

Mistakes in implementation attempt 1
- What I did to try and correct those mistakes

Run time analysis

What I learned



MergeSort

Logical flow of Merge Sort



How can this be parallelized?

el fulle

The algorithm is largely
composed of two phases
which are readily
parallelizable

Split Phase

Join phase




How can this be parallelized?

el fulle

Normally, mergeSort takes
log(n) splits to break the
list into single elements
Using the Magic cluster’s
CUDA over OpenMP over
MPI setup we should be
able to do it in 3.




Breaking the list down (IVPI)

/10 110 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10

A . A . A A A A A - A A A—

For my testing I used 10 of the 13 Dell nodes (for no reason
besides 10 is a nice round number)

Step 1 is to send 1/10™" of the overall list to each dell node for
processing using MPI.



Breaking the list down (OpenlMP)

Now on each Dell node, we start up the 4
Tesla co-processors on separate OpenMP
threads



Breaking the list down (CUDA)

g

[
‘—
NVIDIA NVIDIA NVIDIA NVIDIA

Now we can send % of the 1/10™" of the original
list to each Tesla via cudaMemCpy

At this point CUDA threads can access each
individual element and thus we can begin
merging!



Merging(CUDA)

> |

NVIDIA

On each Tesla we can merge the data in
successive chunks of size 2!




Merging(CUDA)

> |

NVIDIA

On each Tesla we can merge the data in
successive chunks of size 2!




Merging(CUDA)

S |

NVIDIA

On each Tesla we can merge the data in
successive chunks of size 2!



Merging(CUDA)

S |

NVIDIA

On each Tesla we can merge the data in
successive chunks of size 2!



Merging(CUDA)

S |

nviDiA

On each Tesla we can merge the data in
successive chunks of size 2!



Merging(CUDA)

My initial plan for doing this merging was to use a single block of
threads on each device

Initially each thread would be responsible for 2 list items, then 4,
then 8, then 16 etc.

Since each thread is responsible for more and more each iteration,
the number of threads can also be decreased.



Merging(CUDA)

«Example




I I IR B B P T R P I P B R I R B B I B T R 0 I R 0 P R R I R R I P R I B R R R I TR R IR R R R R I R R R
B e e e ek a8 8 8o e L8 8888 8o LA A8 e kAo L 8 e e e L8 8o AL LR L8 L8 a8 L8 Ao 8o Ace 8Lk ok ko Lo e e e A e a8 Ao e e s R e e,
B e e et et e e e e A ok ke e e e e e e e e e e b et

E e e e e e e e e e e e e oo e e e e e e oo e e e b b e e e e e e o o e e e e e e e Lo e e b b b e e e e e e e e e e,

Merging(CUDA)

«Example




Merging(CUDA)

FA

Works in theory but CUDA has a limit of 512
threads per block

NOTE: This is how I originally implemented
the algorithm and this limit caused problems



Merging(IMPI)

A

At this point, the list on each Dell node will consist of
4 sorted lists after CUDA has done it’s work.

We just Merge those 4 lists using a sequential Merge
function.




B e Attt ottt sttt ot ot

T e T T T e e e T e e

Merging (IMPI)

B o R 2 o e e




I I IR B B P T R P I P B R I R B B I B T R 0 I R 0 P R R I R R I P R I B R R R I TR R IR R R R R I R R R
B e e e ek a8 8 8o e L8 8888 8o LA A8 e kAo L 8 e e e L8 8o AL LR L8 L8 a8 L8 Ao 8o Ace 8Lk ok ko Lo e e e A e a8 Ao e e s R e e,
B e e et et e e e e A ok ke e e e e e e e e e e b et

E e e e e e e e e e e e e oo e e e e e e oo e e e b b e e e e e e o o e e e e e e e Lo e e b b b e e e e e e e e e e,

Merging (IMPI)

©2nd merge




o o o e e e e T e o e e e T e e e e e e e e e T e o o e e e S T e e e e e e e S T o o e e e S o e e e e e T e T e T e o e e S e o e e e e e S T e e o e e e S T e e e e e e e e e S T e e o e e S S e e e e e e S e

LD
oS

A A A T A A A P T R A D D D P P B B S P S P B P S B B B S S P E B B T A BB B A A R AR R R R R R R R R R R R R R R R RS AR R A R R R RSB R R R

e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

e

NGHER

©final merge

Merging (IMPI)

A

T
=

2

=
o o ot ettt S S o o e e S o o e e e S e e e e S S o o e e e e S o e e e S S e o o e e e S o o o e e e S o e e e e e e e e S S o o e e S S o e e e S S e e e e S S o o e e e S o e e e e e e e e e e e S e e o e e e e S S e e e e e
T

e,

e
T
OO0
s

AT

N

e e e e e
e




Final Merge(IMPI Send/Rcv)

/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 1/10 E
y————V 4
—"

1/10

1710 , 1710 , 1/10 _ 1/10 , 1/10 , 1/10 , 1/10 , 1/10 )y
i — — i — — — AR

Now we can send the data from each Dell Node to a single Dell Node
which we will call the master node.

As this node receives new pieces of merged data, it will just merge it
with what it has already using the same previously mentioned
sequential merge routine.

This is a HUGE bottleneck in the execution time!!!



Problems

I tested and implemented this algorithm
using small, conveniently sized lists
which broke down nicely.
Larger datasets caused problems
because of all the special cases in the
overhead

- Spent a lot of time tracking down special cases

- Lots of “off by 1” type errors
Fixing these bugs made it work perfectly

for lists of fairly small sizes



Bigger problems

The Tesla coprocessors on the Magic
cluster only allow 512 threads per block.
HUGE problem for my algorithm.

My algorithm isn’t very useful if it can’t
ever get to the point where it
outperforms the sequential version



Solution

Thread Block 0 Thread Block 1 Thread Block N-1

QUKL I (K

‘ Shared Memory | Shared Memory l Shared Memory

If more than 512 threads needed then add another block
Our Tesla devices allow for 65535 blocks to be created
Using shared memories, should be able to extend the old
algorithm to multiple blocks fairly easily




Solution results

Was able to get all the math for breaking
up threads amongst blocks etc.
My algorithm now will run with lists that
are very large...

- But not correctly
There 1s a problem somewhere in my
CUDA kernel

- Troubleshooting the kernel has proven difficult
since we can’t easily run the debugger (that I
know of).



Analysis

The algorithm is correct except for a
small error somewhere

Works partially for a limited data size
All results are an approximation to what
they would be if the code was 100%
functional



seconds

30

25

20

15

10

Analysis

Sequential merge sort run time (ci-xeon-3)

.
/

900 4500 9000 45000 90000 450000 900000 45000000 90000000 900000000

list size

Running my parallel version using 900,000,000 inputs on 9 nodes
took only 10.2 seconds (although its results were incorrect)



Analysis

This graph shows run
time versus the number
of Dell nodes which were
used to sort a list of
900,000 elements.

Each Dell node has 2
Intel Xeon CPUs running
at 3.33GHz

Each Tesla co-processor
has 4 GPUs

The effective number of
processors used is:

nurnber of Dell nodes used

#of Dell Nodes*2*4



Less Processors led
to better

performance!!!
Why?

- My list sizes are so
small that the only
element which really
impacts performance
is the parallelism
overhead.

Analysis

nurnber of Dell nodes used




Analysis

Communication setup eats up a lot of
time
« cudaGetDeviceCount()

- Takes 3.7 seconds on average

- MPI setup takes 1 second on average
Communication itself takes up lot of
time.

- Sending large amounts of data to/from several
nodes to/from a single node using MPI was the
biggest bottleneck in the program.



LLessons

Don’t assume a new system will be able
to handle a million threads without
incident... 1.e. read the specs closely.
When writing a program which 1s
supposed to sort millions of numbers,
test it as such.

Unrolling a recurrence relation requires
a LOT of overhead. New respect for the
elegance of recursion.



