
Basic Scheduling in Grid
environment &Grid Scheduling

Ontology

By: Shreyansh Vakil
CSE714 – Fall 2006 - Dr. Russ Miller.

Department of Computer Science and

Engineering, SUNY Buffalo

What is Grid Computing??

• Middleware which allows people and organisations to share
computing resources in a coordinated manner

• Data and computation can be distributed between machines in other
institutions around the country/world

• Remote access to resources that are not available locally

Grid computing aims to be seamless and secure
• Users interact with “the grid”, instead of individual machines
• Different platforms integrated using standard protocols
• Support for a wide range of applications

Common ways in which a grid is used
• Execute a program on a remote host
• Read and write data stored on another machine
• Access services provided by a particular server

Types of grids
“Heavyweight” grids (Or Large Grids Or Global Grid)
• Consist of supercomputers and other high-end machines
• Generally used for computation sharing
• High level of security and autonomy
• Can be complex to set up and maintain

“Lightweight” grids (Or Medium Grids Or Enterprise Grid)
• Commodity desktop machines in homes and offices
• Generally used for computation sharing
• Usually based on master-worker model
• Software are much simpler, can be installed by end users

Service based grids (Or Small Grids Or Cluster Grid)
• Can consist of any type of machine
• Provides specific functionality rather than generic compute cycles
• Platform independent; implementation details hidden behind

interface

What is Scheduling??
Need to decide when and where computation and other things are

to occur

Traditional CPU scheduling
• Familiar case of task scheduling on a single CPU - time-slicing

allocates CPU time to processes
• SMP systems - several CPUs - time slices are allocated between

processors
• Parallel computers - many processors - tasks usually have exclusive

access to a certain number of processors
• Clusters of workstations – similar case – tasks must be assigned to

specific processors

Lots of past research already done for parallel computers and
clusters

• Grid computing has some similarities to these
• However, many additional factors have to be considered

Grid Scheduling
Many extra complexities

Scheduling between multiple computers
• Different CPU speeds, architectures
• Network connectivity can vary widely between machines
• Many different users and concurrent tasks

Data location is important
• Data should be close to computation for efficient access
• Affected by network bandwidth and available storage resources

Centralised vs. distributed scheduling
• Centralised scheduling offers more control, but limits autonomy of

individual resources
• Centralised algorithms only scale to a few hundred machines
• Distributed scheduling gives more control to machine owners, and is

much more scalable

Grid Scheduling
Current scheduling strategies for grids are limited

• Some only support specific application models e.g. task
farming

• Generic mechanisms do not usually support parallel programs

• Scheduling is generally based on independent jobs, or
application-specific parallel scheduling

• Centralised schedulers - limited scalability

Three main types of scheduling

• Job submission

• Services

• Data placement (replica management)

These types of scheduling are normally independent of
each other.

Job submission
• Similar to batch processing model used on mainframes
• Client supplies details of job to run, including program name,

command-line arguments, environment variables
• In many cases, client also uploads executable to run
• Server runs job immediately or in the future, and notifies user on

completion
• Useful for gaining access to faster computers on the grid to run your

own programs
• Platform-dependent; client needs knowledge of server configuration,

and if binary executable supplied, server must have specific
OS/architecture

Common examples
• Globus GRAM
• Condor
• LSF
• PBS

Job submission - Scheduling
Metascheduling (done at grid level)
• On which resource should the job run?
• Choice based on job requirements, access permissions, machine

load and other parameters
• Parallel jobs can be scheduled to run across multiple resources
• Each resource may physically contain multiple processors – e.g.

parallel computer or cluster
• Example – parameter sweep application. Each resource handles a

particular range.

Local scheduling (done at individual resource level)
• Once job is assigned to a resource, when should it run?
• Usually determined by local job queuing system
• Job is run if machine is currently unused, or may be delayed until

the other jobs have completed
• Alternatively, job may start straight away and run concurrently with

any other existing jobs on that machine

Computational resource

Computational resource

Computational resource

Client
Resource broker (metascheduler)

Services
• Well-defined interface with a set of operations
• Accessed via standard protocol – no knowledge of platform necessary
• Different implementations of a service, all conforming to the same

interface, can be accessed transparently by clients
• Set of services provided by a machine is generally fixed – clients can’t

supply code to execute as they can in the job submission model
• Additional services can only be installed/configured by machine owner

Uses
• Client-server app – access a single service
• Workflow application – access many services and coordinate flow of

data between them

Common technologies
• Java RMI
• Web Services
• Sun RPC

Services - Scheduling
• If a service is provided by more than one machine, client can

chose which to connect to

• Some machines may be more desirable than others, based
on expected time to perform operations or transfer data

• Clients either obtain list of servers from a central registry, or
have messages redirected by some intermediate entity

Example: Website mirroring

• Multiple web servers host copies of the same site

• Load balancer intercepts requests from clients and redirects
to servers according to some scheduling algorithm

• Alternatively, multiple DNS entries for the same site – client
selects a machine

Data scheduling and replication
• The faster a program can access its data, the better

• Can move data to the program, or move program to the data

• Multiple copies (replicas) of the data can exist on different
machines

• Programs access the “closest” replica (the one they have the
fastest access to)

• Data from remote hosts may be cached locally

Knowledge about data access patterns can help with
replication

• e.g. if many jobs access the same file, can pre-stage that file
to remote machine(s) that will run the jobs

Data vs. Computation scheduling

• Scheduling decisions that choose a machine just on CPU
speed/load could result in data access that is very slow.

• Is placing the job on Host 1 or Host 2 better?

• This depends on how much data it reads…

Host 1: 400Mhz Host 2: 2.6Ghz

256kbps DSL

Data file
18Gb

Job

Data vs. Computation scheduling

• If the job access the entire file and does only a small amount
of computation, it is better to run it on Host 1

• But if it only reads a few kb from different parts of the file,
running the job on Host 2 would be quicker

• File could be pre-staged to Host 2 if it is reused by multiple
jobs

Host 1: 400Mhz Host 2: 2.6Ghz

256kbps DSL

Data file
18Gb

Job

Bringing Knowledge to
Middleware---Grid

Scheduling Ontology

Motivation
• In today’s scenario, grid paradigm involves sharing of variety of

resources across multiple administrative domains.

• Environment being dynamic, there is a need to abstract potential
drawbacks away from resource users and resource providers

• Need of a sophisticated scheduling and resource management
framework

• Scheduling HPC systems is already a challenge, but coordinated
scheduling of multiple resources to automatically process a complex
work-flow is next to impossible, if capabilities of resources are not
known prior

• So, the need of Scheduling domain ontology

• Here, this method provides a common semantic
understanding to be shared between the components
involved in the scheduling process

• By integrating such an ontology, there is an increase in
the automation level and administration of grids easier.

Other Advantages of this include:

• Seamlessness

• Resource autonomy and platform independence

What is Ontology??

• Ontology is a data model that represents a domain and is used to
reason about the objects in that domain and the relations between
them.

• Used in Artificial intelligence the semantic web, software
engineering and information architecture as a form of knowledge
representation about the world or some part of it.

Ontologies generally describe:

• Individuals: the basic or "ground level" objects
• Classes: sets, collections, or types of objects
• Attributes: properties, features, characteristics, or parameters that

objects can have and share
• Relations: ways that objects can be related to one another

Environment & Requirements

To perform a scheduling task having several independent
resources, knowledge and understanding of the
environment is required on several levels like:

1. Single resources are described in a site-dependent
way

2. Local scheduling systems provide different formats
and interfaces to describe and manage resources

3. Meta-scheduler uses specific methods to map a user
request to the requests addresses to different local
scheduling systems

Human Involvement in scheduling could be either:
• Resource Requester (RR) Or
• Resource Provider (RP)

An entity could be a RR or RP at the same time

E.g. meta-scheduler (acts as a RR to underlying scheduler
and take the RP role with respect to superordinated
schedulers)

Requirement is to automise the mapping from RR
space to RP and vice-versa and so reduce the
manual intervention of users and providers in
scheduling and RM process.

• Resource Ontology--Categorises and draws the
relationships between the various ways the resources
and services are described

• Scheduling domain ontology seems to be a promising
way to introduce knowledge exploitable by machines into
the scheduling process in grids

• Sharing such an ontology among resource brokers,
resource management systems and schedulers would
make the discovery of resources and their mapping of
requests to resources less arbitrarily

• Negotiation between sites more distinct and may be
carried out automatically by a meta-scheduler

Ontology Building Life-cycle

Knowledge Acquisition
• Grid Scheduling Dictionary (GSD) –an international document produced

by the Grid Forum

• Purpose – Create a dictionary that has common terms and their
definitions and used by various schedulers-local and global grid level.

• Purpose and scope of GSD makes it an ideal input to knowledge
acquisition

• GSD has terms, their definite descriptions and the relations between
them helps reducing the effort to transfer the domain-specific piece of
knowledge from human readable to machine – processable form

• Also, command line parameters from interfaces and API’s of available
scheduling systems considered as input and potential new terms for
adding to the dictionary

Semantic Markup Languages and
Tools

• Machine processable ontologies created using
semantic markup languages

• Unlike general markup language, the semantic
markup language includes additional information
attempting to encode the meaning of the content
described using the markup language

• Next slide ---- Semantic Markup languages stack

Semantic Markup Languages Stack

Semantic Markup Languages Stack

• XML,XML schema – simplest of all markup languages

• RDF (Resource Description Framework) – document made of
statements consisting of subject, predicate, object called triples and
attribute value pairs

• RDF schema on top of RDF providing a formal definition of RDF
adding classes and properties

• RDF resources – web pages, computer codes, data, hardware,
algorithms, research group etc.

• DAML+OIL combination of DARPA Agent Markup Language
(DAML) ontology language (ONT) and OIL which is Ontology
inference layer for RDFS

Semantic Markup Languages Stack

• Our language of choice – OWL DL (Web Ontology Language –
Description Logics)

• Based on Description Logics and therefore allows automated
reasoning over an ontology.

• OWL Full – too rich language to allow this
• OWL Lite - quite simple to fulfill the requirements of Grid Scheduling

Ontology

• Many tools dveloped supporting the creation and maintaining of
complex DAML+OIL or OWL ontologies

• Eg: OntoMat, PC Pack, Protégé (preferable), etc…

Comparison between different
approaches in Grid computing

• Resources and resource requests today are described using
descriptive and constraint languages

Exact syntactic matching is done in Condor
Syntactic translation done in Globus
Database lookup and mapping done in UNICORE

• Advantage of these methods:
1. little overhead in building the systems

• Disadvantage:
1. The development of Resource Provider space and Resource

Requester space descriptions must be synchronised.
2. The low flexibility to react on changes in RP or RR.

Comparison between different
approaches in Grid computing

• In Using ontologies, definitely overhead in creating and
maintaining ontologies

• But once published ,it might be used without additional effort in
other environments too

• Advantages
1. The technology developed for the Semantic Web can be

exploited.
2. The development of RP and RR space ontologies may happen

independently.
3. The high flexibility to react on changes in RP or RR.

• Grid Scheduling Ontology aims to fill this gap and will allow
negotiation between sites with different resources available under
different scheduling policies to become more distinct and carried
out automatically by a meta-scheduler.

Realisation

• Driving force for the development and usage of ontologies, languages
and tools --- the idea of a Semantic Web.

• Originating from a Web (Service) environment ontologies are easy to
integrate into the future versions of service oriented and WSRF-based
Grid systems like upcoming implementations of UNICORE or the
Globus Toolkit.

• When the meta-scheduler receives a request to schedule a job
comprising multiple resources ,the meta-scheduler will start querying
the individual local schedulers about their capabilities.

• Eg: If inference engine returns for example “NQS and OpenPBS are
schedulers not capable of doing advance reservation” ,then the meta-
scheduler decides that a remote scheduling system (controlling a
resource needed for a job) that is exposed as “NQS” is not suitable to
schedule a component of an application that has to run in parallel with
other components using other resources.

Realisation

• The RACER inference engine will be used to find out for
each scheduler to which class of schedulers it belongs
and whether the scheduler has the necessary
capabilities.

• Based on this knowledge the meta-scheduler starts
negotiations with the appropriate local schedulers.

• The set of appropriate schedulers may be empty, of
course, because none of the resources available has a
local scheduler with the necessary capabilities,

e.g. advance reservation or interactive use of the resource.

Example Conceptualisation of the
Ontology

Conclusion
• Introduced domain-knowledge into scheduling middleware making

scheduling-specific parts of such knowledge exploitable encoded into a
scheduling domain ontology.

• It provides a common semantic understanding to be shared between the
components involved in the scheduling process

• It increases the automation level, and makes usage and administration of
Grids easier.

• We identified purpose and scope of the ontology.

• We selected OWL DL as the appropriate language.

• We evaluated and selected the development tools to be used in the
process.

• We finalised the initial knowledge acquisition.

• We saw with the conceptualisation of the ontology.

Future Work

• Lots need to be done

• Examine existing resource ontologies with respect to their re-
usability.

• Need to evaluate Grid Scheduling Ontology’s relationship to other
ontologies which serve similar needs in a service-context

• Necessary to design and create the adapters of schedulers that
cannot be modified and integrate the respective components in
existing scheduling and RM systems

References

• [1] R. Menday and Ph.Wieder. GRIP: The Evolution of
UNICORE towards a Service-Oriented Grid. In Proc. of
the 3rd Cracow Grid Workshop (CGW’03), Oct. 27-29,
2003.

• [2] C. Catlett, W. Johnston and I. Foster. Global Grid
Forum Structure. Grid Forum Document GFD.2, Global
Grid
Forum, 2002.

• [3] VIOLA – Vertically Integrated Optical Testbed for
Large Application in DFN. Project web site, 2005. Online:
http://www.viola-testbed.de/.

References (contd..)

• [4] J. Schopf. Ten Actions when Grid Scheduling. In Grid
Resource Management (J. Nabrzyski, J. Schopf and J.
Weglarz, eds.), pages 15-23, Kluwer Academic
Publishers, 2004.

• [5] J. Brooke, K. Garwood and C. Goble. Interoperability
of Grid Resource Descriptions: A Semantic Approach. In
Proc. of the GGF 9 Semantic Grid Workshop, 2003.

• [6] C. Goble and N. Shadbolt. Ontologies and the Grid.
Tutorial held at GGF 4, 2002. Online:
http://www.semanticgrid.org/presentations/ontologies-

tutorial/.

THANK YOU!!!

