Autonomic Computing and Grid

Grid Computing : Fran Berman, Geoffrey C. Fox, Anthony J. G. Hey
Chapter 13 : Pratap Pattnaik, Kattamuri Ekanadham. Joefon Jann

Catherine Ruby
February 26, 2004
CSE 718 presentation



Image courtesy of the Buddha Dharma Education Association Inc
(http://www.buddhanet.net/index.html)



TThe ‘Four Noble Truths® of
Gridl Computing

Managing a large computing system is very
complicated.
The cause of this is the constant growth of

computing and Its increasing complexity. as more
heterogeneous components are added.

Tihere Is a way of managing large scale
computing| envirenments.

This 1s by fellewing the “Noble Eightiold Pathi of
autenemoeus computing.



IBIVI's' Eight Defining Characteristics
of an Autenomic System (Part 1)

= The system must know: its own components
and their details.

= The system must change its configurations
constantly with changing environments.

= The system must continuously look for ways
{0 optimize ItS process.

" The system must recognize abnormal
conditions or preblems that may harm! its
Woerkings analbe able to recever from them.



IBIVI's' Eight Defining Characteristics
of an Autenomic System (Part 2)

Tthe system must be protectea against attacks.

TThe system must know: its environment,
surroundings, and other resources available to
it.

TThe system must have open standards and
operate In “heterogeneous worldr.

TThe system must be able to stay ahead of the
user and guess intelligently what reseurces will
be required and how! to use them efficiently
while maintaining a simple interface with the
USer.



Autonomic Grid Computing

MAIN GOALS:

= reduce the work and complexity
assoclated with a large system

= e able to better respond to sudden
changes in the system and adjust settings
appropriately.



[First Issue :
Component Management

= develop a strategy for merging various
computer components with different
capabillities

" make use of components like CPU,

memory, disks and network as efficiently.
as possible

= dynamically make changes to
management of compoenents as the
envirenment dictates



Second Issue :
Changes Over Time

= deal with changes in demands over time.
" manage sudden or unexpected changes

= have some way to deal with leng term
changes In sureunding environment

= must both detect andl appropriately choose
[ESPONSES 10 any considerable changes in
the system




Goal-Oriented Model

= Vlake most autonomous decisions on the
local level and establishi clear
responsibilities between localland global
autenoemous components (reduces
complexity)

= Poor decisions on a smaller scale will not
significantly affiect the whole I corrected
appropriately.



T'he Big Picture

A “Goal Oriented™ autonomous system:

= Provides services to components in system

= Recelves services from other components

= Adapts quickly te a rapidly changing
environment or errors In previous behaviors

= Adjusts te new: components: that may: be added
oVer long periods; of time



Common approaches torhandling
complicated systems

= Object Orientation — hides aspects of the system
from components that don't require the
Information. Monitor system, constantly and
dynamically: choose best response.

= Fault-tolerant Systems — maintains a set of faults
and can detect or correct faults from that set In
the system (fault = reduction In periermance).
Vieniter constantly:and readjust when behaviers
of surreunding components: are abnormal.



Agent-based Resource
Management for Grid Computing

An example of autonomous individua

components to manage a complex grid
system

A4 (Agile Architecture and Autonomous
Agents) make up a highilevel abstraction
of a grid structure where individuall agents
both discover andl advertise reSournces.



Implementation of A4 Agents

= Agents in the system exist with the ability
to communicate with one another, the
ability to adapt to sudden external
changes, and are selii motivated"

= P\A'S, or “Performance Monitors and
Advisors” keep track of agents and

reconfigure them periodically to keep them
periorming eptimally.



The A4 Agent and Performance
Monitor Advisor

Agent Performance Monitor and

. . Statistical -
Monitoring ﬂ Model Composer

Performance Model Strategies

Reconfiguration Simulation Engine
Strategies







TThe basic server component

= Take an “Autonomic Server Component,
C”

" Jake all of the elements whichi interact
with C, or Its environment™



Component C's Greek Letters

2 Input alphabet of the component
@ : output alphabet of the component
B (u, v) : relation satistying appropriate I/O pairs

Y internal state of component (data structure to keep
track of all'elements of current state)

¢ . external state ofi component (abstraction ofi external
environment, exterior periormance of other components.
Dynamic, IS not accurate, ¢ Is the estimate)

M : an iImplementation translating internal and external
states Into input/output pairs

Il : set ofi implementations in component. C

@ : algorithm whichi choeses best implementation (Is it
werthwhile te switechi?)

M : efficiency: of the iImplementations ofi C



ENVIRONMENT

Clients Resource Managers

Other services

Estimated State of Environment

g'

Internal State

b 4

AUTONOMIC SERVER COMPONENT

C




@ and the maintenance of ¢

= 0o depends almost entirely on
characteristics of entire system and the
efficiency ofi its different implementations

= C must keep a fairly: accurate ¢ picture of
the external environment to make good
iInternall decisions

= C must be able to periodically update ¢
fliemi externall information and keep ¢
Within reasenable limits off actuallc.



Two Methods of Maintaming ¢:

= Self-Observation Approach

= Collective-Observation Approach



Maintenance of ¢ : Self-Observation

" No external state information received
from other components

m All information about environment from C's
Interaction

= aintained by logs of history &
Input/eutput Interactions w/ clients and
services, tracks quality.

m| ¢t continuously revised withrall- new inputs



Seli-Observation (Pros & Cons)

" PROS :

- Component is largely independent of external
objects — It can easily be plugged into any
environment and it will function

- Adapts well torchanges over a leng period of
time

= CONS :

- Component cannot adapt quickly to sudden
variations, in input — It takes, severall interactions
[0 recognize changes in the environment



Seli-Observation Example :

“‘Memory Allocator”

Autonomic Server :
iInput requests - efficient input handling

= Two inputs :
Alloc (n) — request block of ‘n” bytes
Free (a) — returns previously allocated block

= [hree Outputs : null; error, address

= Four Goals : quick turnaround, never deny
iequests, block locality and minimized
ragmentation



“‘Memory Allocator™ Implementations

“Linked-List Allocation” “Slab Allocation”

" \Jaintains list of " Reserves several “slabs”

addresses & free blocks,
searches for free blocks
>= reguest size n

If no blocks are big
enough, It divides the
block, removes it from the
List and returns the
address

When a block IS returned,
an attempt is made to
merge It with; ether free
Space

of memory. of size most
frequently requested.

When memory. IS
requested a free block of
the appropriate size from
a ‘slab” is returned



‘Memory Allocator” a strategy

Internal state ¥ keeps track of free slabs and linked list,
¢ tracks requests for memory

a chooses “slab allocator” when slabs for requested size
exist, otherwise it chooses the linked list implementation

It input Is continuously requesting one block size for
which ai slab does not exist, a new slab is created for it
(faster)

Slabs are returned to the list when they go unused for an
extended period of time

n (From Slab) < n (From List) < n (New: Slab)

a must weigh the costs of each implementation with the
costs ofi allocating fromi current iImplementation; based on
iecords of Input block allecation requests



Maintenance ofi ¢ : Collective-Observation

= The system Is connected by services to
and from each component

= Component C can maintain ¢ by receiving
updates from the components that
surreund It

= Components update surreunding
components by broadcasting curient
states to other components

= Broadcasting Is expensive!



Example of Component States

Component C, Component C,
Has two Internal states at Has two Internal states at
time t: time t :

= S.. (t)-the current state ™ Sy (t) — the current state
of componentC, <> of component C;

= S (t)- the current state ™ Sz (t) — theicurrent state
off component C2 <—» Ol component C2

At the estimated derivative of S; (t) at timeit :

thus S; (t + dt) = S, (t) + A" (dt)



Collective-Observation Example 1 :
“Subscriber Approach” (push)

= Component C, subscribes to component C, if it
IS interested in C,'s state, stores this
subscription In ¢

= C., can estimate the state of C, at time t because
it grows, at a rate of AL,.

= C, monitors its own state, If its state grows
beyond what Is expected (“tolerance rate”), it
computes a new: At, and sends this new.
iInfermation te all offits subsecrinvers like C,

= Broadcasts are proportional to rate ofi change of
COmponent states



Collective-Observation Example 2 :
“Enqguirer Approach™ (pull)

= Components are only updated when; they
explicitly request information from the
components they are subscribed to

= Each component sets “tolerance limit” of
states of' components: it is subscribed to

= Whenthe state ofi aicompoenent C, grows
pbeyond the bounds of this, “telerance limit”,
C. requests upaated information



Collective-Observation Example 3':
“Routing By Pressure Propagation”

= Fntire system receives information from
outside of the system — each component
Inside the system can process any iIncoming
iInformation (common; in \Web Services)

= \Wheni a compoenent receives incoming
Information,, it IS passed: to an input queue of
a specific component

= Selection ofi this “specific. component” IS
autenemic, aimiis e minimize respoense time



Collective-Observation Example: 3:
Selection of Component

= Fach component maintains information about
the whole system

" <[, T~ i M IS how long it take component C,
o process any incoming Information, and T IS
how: leng It will take to send the request to the
appropriate component C, from C,

= Time for transaction from C, to processing at
C, 1, +(1+ Q)" W] : Q=length ofigueue

= Howeyver, C. has no knowledge of queue
lengthrof €,



Collective-Observation Example 3:
Estimated Queue Length Maintenance

= | ke other collective-observation examples, each
component keeps a list of states with: the
estimated queue length with;a variation with
respect to time of all other components

= \When component C, receives information;, It
finds the component C, which will minimize: the
transaction time and sends it there

= \When a component's queue exceeds the
“‘tolerance lImit*, it updates its estimated queue
lengtiramong) all ether compenents in the
system



The Grid

Grid system is heterogeneous, so protocols must be defined to share
iInformation

= [Fabric Layer - defines protocols for accessing components of
system

= Connectivity Layer — security protocols
= Resource Layer — protocols for getting resources

= Collective Layer — protocols for finding services and managing them
on bethi user anal grid levels

Service : an abstraction, a guarantee ofi a certain
“pPehavior” between layers via these protocols, though
the standard implications ofi a ‘behavior" are still being

iesearched.



Services and Components

A “service” is similar to the component model of
the autonemic grid

The service has an implementation that
guarantees the behavior s met

It must keep track of outside information and
modiiy Iits behavior accordingly

TThus a service should also have an algorithm o
to change Iits behavior according to changes in
the environment and choose the most
periormance-efficient resources



A Component-focused approach :

= Hides complexity from other elements in
the system

= Contains a simple interface with other
components

= Vlaintains the ability to detect and respond
to changes in the system and fit I1ts
surreundings



Requirements of Autenomic
Components

" Present interface between clients and
server

" Monitor its environment as time
pProgresses

= Appropriately' and rapidly change behavior
WhHER changes: In surroundingl envirenment
Occeur (changing demands; or other
components failing)



Future Research

= Generating new algorithms and stabilizing
existing ones

= |\lanaging behaviors ofi components

. Standardizing changes ofi these behaviors
with respect to time



References

Buddha Dharma Education Association Inc. The Four
Noeble Truths : Teachings by Ajahn Sumedho.
Attp://waww.bluddhanet.net/4noeble. htm

Cao, Junwel, Daniel P. Spooner, James D. Turner,
Stephen A. Jarvis, Darren J. Kerbyson, Subhash Saini,
and Graham K. Nudd. Agent-based Resource
Management for Grid Computing.

RtpH/AWWEd csawamnwickeac ki research/apsa/html/dewnio
2dS/pPUBklic/dees/ Cavd ARNIGE A

Hom, P. Autenomic Computing, 25 February 2004,
RN/ MW ESEANCHN PO/ 2ULeRemICA

Pattnaik, Pratap, Kattamuri Ekanadham and Joefon Jann.
Auteonomic Ceomputingland Grid. Grd Computing.




