
Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 1 of 21

Introduction to Parallel Algorithms and Architectures

RAM (Random Access Machine):

1. Memory
a) Memory with M locations, where M is (large) finite number.
b) Each memory location is capable of storing a piece of data.
c) Each memory location has a unique location.

2. Processor
a) A single processor operates under control of a sequential

algorithm.
b) The processor can load/store data from/to memory and can

perform basic arithmetic and logical operations.
3. Memory Access Unit

a) Creates a path from Processor to Memory
b) Establishes a direct connection between memory and processor.

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 2 of 21

Each step of a RAM algorithm consists of:

1. Read phase - processor reads data from memory into register
2. Compute phase - processor performs basic operations in memory
3. Write phase - processor writes contents of register into memory

Time: discuss the time that it takes for each of these 3 phases - special
attention to the time to access arbitrary location in memory. (Note: each
register must be of size log M in order to accommodate distinct memory
locations.)
1. Compute takes O M(log log) time.
2. Memory access for individual access requires O M(log) time.
3. To process k memory accesses requires O k M(log)+ time due to

pipelining.
4. Since these terms don’t typically effect the running time analysis and

comparison, we say a step takes O()1 time, which is termed uniform
analysis.

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 3 of 21

PRAM (Parallel Random Access Machine):

1. Processors
• There are n identical processors (PEs), P P Pn1 2, ,..., , each of which

is identical to the RAM processor. Assume that n is (large) finite.
2. Memory

• Common/Global memory with M locations, M n≥
3. Memory Access Unit

• similar to MAU of RAM, but allows any PE to get to any memory
location

Two processors that want to communicate can use the shared memory as
a bulletin board. Show example.

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 4 of 21

Each step of a PRAM algorithm consists of:

1. Read phase - up to n PEs may simultaneously perform one read from
Memory to its local memory (i.e., a register)

2. Compute phase - every processor is entitled to perform a (small)
fixed number of logical or arithmetic operations on the contents of its
local memory (registers)

3. Write phase - up to n PEs may simultaneously write a value that is its
local memory (i.e., a register) to the global/common memory.

Note: “up to” means that there may be reasons why some PEs don’t want
to perform the operation (they might be masked out or the read/write
may be conditional).

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 5 of 21

Memory Access:

1. Exclusive Read (ER)
2. Concurrent Read (CR)
3. Exclusive Write (EW)
4. Concurrent Write(CW)

a) Priority CW - only PE with highest priority succeeds
b) Common CW - all PEs writing to the same location must write

the same value
c) Arbitrary CW - one PE, chosen arbitrarily, succeeds
d) Combining CW

i) Arithmetic functions - SUM, PRODUCT
ii) Logical functions - AND, XOR
iii) Selection/Semigroup - MAX, MIN

Common Models of PRAM:

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 6 of 21

1. CREW
2. EREW
3. CRCW
4. ERCW

Time:

1. Compute - each processor is same as a RAM and the instruction set is
identical, so the time is the same: O M(log log)

2. Read/Write - if Memory Access Unit is implemented as combinational
circuit, then the access time is O M(log), though pipelining can again
improve things.

For similar reasons in terms of comparison of running times, choose
each step of a PRAM to take unit time, i.e., O()1 time.

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 7 of 21

PRAM Notes:
1. The PRAM is not a physically realizable machine.
2. It is a powerful model for studying the logical structure of parallel
computation without worrying about communication.

PRAM Examples:

1. Minimum - bottom-up tree-like computation
2. Boadcast - top-down tree-like computation (ER) or CR
3. Search
4. Parallel Prefix: Given x x xn1 2, ,..., and a binary associative operator

ƒ , compute x x x x x x1 1 2 1 2 3, , ,...ƒ ƒ ƒ where the kth item
x x xk1 2ƒ ƒ ƒ... is called the kth prefix.
 For Arrays only (not linked lists) do:

i) Running Sum
ii) Running Minimum

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 8 of 21

Distributed Memory vs. Shared Memory: General Discussion
• Shared Memory

• in general, shared memory machines don’t scale well
• unit-time access cannot be preserved

• Distributed Memory
• scales better
• typically involves message passing

Distributed Address Space vs. Shared Address Space:
General Discussion
• permits shared memory programming and concepts
• can involve physically shared memory or physically distributed

memory

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 9 of 21

Interconnection Networks:

1. Measures

a) Degree of the network - i.e., maximum degree of any PE in the
network.

b) Communication Diameter - maximum of the minimum distance
between any pair of PEs.

c) Bisection Width - minimum number of wires that have to be
removed (severed) in order to disconnect the network into 2
“equal” size subnetworks.

d) I/O bandwidth - usually not critical as typically assumed that
data already resides in machine.

e) Time to perform basic operations (min, sum)

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 10 of 21

2. Processor Organizations

a) PRAM (discuss measures)

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 11 of 21

b) Mesh:
- communication diameter

 - bisection width
 - minimum
 - sorting and/or lower bound on sorting

i) Linear Array
a) class demonstration of sorting
b) introduction of a rotation operation
c) show parallel prefix

ii) Ring
iii) 2-D Array

a) do min two ways
b) do sorting lower bound
c) do parallel prefix

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 12 of 21

c) Tree
i) Communication diameter O n(log)
ii) Bisection Width O()1
iii) show min
iv) lower bound on sorting is W()n

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 13 of 21

d) Pyramid
i) tapering array of meshes
ii) combines advantages of mesh and tree
iii) each PE connected to

a) 4 mesh neighbors
b) 4 children
c) 1 parent

iv) n base PEs ⇒ (/) /4 3 1 3n - PEs
v) apex is the bottleneck
vi) Communication Diameter: Q(log)n
vii) Bisection Width: Q()/n1 2

viii) Min: Q(log)n
ix) Sorting: W()/n1 2

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 14 of 21

e) Mesh-of-Trees
i) mesh with a tree of PEs over every row and every column
ii) MOT of base size n has

a) n PEs in the base mesh
b) n1 2/ column trees, each with n1 2 1/ - non-base PEs
c) n1 2/ row trees, each with n1 2 1/ - non-base Pes
d) 3 2 1 2n n- / total PEs
e) All PEs are identical except for neighboring connections

(1) Base PE: 4 MESH neighbors; parent in row tree;
parent in column tree

(2) Interior tree PE: parent in tree; 2 children in tree
(3) Tree root PE: 2 children

iii) Communication diameter: Q(log)n
iv) Bisection Width: Q()/n1 2

v) Minimum: Q(log)n
vi) Sorting: W()/n1 2

vii) Bottlenecks for moving data not as bad as pyramid

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 15 of 21

viii) Mesh-of-trees Examples:
a) Cross-product of n1 2/ pieces of data on MOT of base

size n
b) Sorting n1 2/ pieces of data on MOT of base size n.

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 16 of 21

f) Hypercube: An r-dimensional hypercube has N r= 2 nodes and
r r2 1- edges. Each node corresponds to an r-bit string, where 2
nodes share an edge iff their r-bit strings differ in exactly 1
position.
iv) Each node is connected to log2 N other nodes.
v) This is not a fixed degree network.
vi) Show how to build an r-cube recursively from two (r-1)-

cubes.
vii) An edge is a k-dimensional edge iff it connects nodes

differing in the kth bit position. So, the notion of edges of
dimension k is well defined.

viii) Communication diameter: log2 N
• Note: includes multiple paths between nodes

ix) Bisection Width: N/2

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 17 of 21

x) Therefore: The hypercube has low communication diameter
and high bisection width. This is very desirable!

xi) The hypercube is both node and edge symmetric in that by
relabeling nodes, we can map any node to any other node
and preserve communication links.

xii) Discuss lower bounds on sorting based on
a) Bisection Width
b) Communication Diameter

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 18 of 21

SIMD vs. MIMD: General Discussion (Flynn’s Taxonomy, 1966)

Granularity: Fine-Grained vs. Coarse-Grained

General Performance Measures:

1. Throughput: The number of results produced per unit time
(typically, wall-clock)

2. Running time: T npar () represents the length of time from the
beginning of the algorithm until the last processor terminates.

3. Cost: C n p p n T n ppar(,) () (,)= ¥ is an upper bound on the total
number of elementary steps executed by this algorithm with p(n)
processors on input of size n.

4. Work is the total number of operations performed (not counting
NOPs)

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 19 of 21

5. Speedup: S n p T n T n pseq par(,) () / (,)= , is the ratio between the time
taken for the most efficient sequential algorithm to perform a task
compared to the time needed for the most efficient parallel algorithm
to perform the same task on an input of size n with p processors.
a) Linear Speedup: S pp =
b) Superlinear Speedup: S pp > . Discuss:

i) not possible since a single PE can always emulate the
parallel machine

ii) but, choose algorithm before problem instance
iii) emulation can have problems due to cache management
iv) parallel algorithm can get lucky

6. Efficiency: E n p T n C n p S n p p nseq(,) () / (,) (,) / ()= = , measures
how well utilized the processors are. Measures the “cost-
effectiveness” of the computation. Typically, the best efficiency is
at most 1.

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 20 of 21

7. Discuss relationship between measures and discuss goals of
algorithm development

8. Amdahl’s Law: S f f pp £ + -1 1/ [() /], where f is the fraction of
operations that must be performed sequentially and p is the number
of processors.
a) That is, a small number of sequential operations can

significantly limit the speedup on a parallel computer.
b) E.g., if 10% of the operations must be performed sequentially,

then S p £ 10 regardless of how many processors are used.
c) Discuss the falacy of the argument in terms of increased problem

size.
9. Scalable:

a) An algorithm is scalable if the level of parallelism increases at
least linearly with the problem size.

b) An architecture is scalable if it continues to yield the same
performance per processor as the number of PEs increases.

Overview of Parallel Algorithms & Architectures

Lecture Notes Copyright © 1996-2000 by Russ Miller. All Rights Reserved. Page 21 of 21

c) Scalability is important in that it allows users to solve larger
problems in the same amount of time by purchasing a larger
machine.

