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Abstract 
 
A computational and data grid developed at the Center for Computational Research in 
Buffalo, New York, will provide a heterogeneous platform to enable scientific and 
engineering applications to run in a Buffalo-centric grid-based setting. A proof-of-
concept heterogeneous grid has been developed using a critical scientific application in 
the field of structural biology.  The design and functionality of the prototype grid web 
portal is described, along with plans for a production level grid system based on Globus. 
Several projects covering a collaborative expansion of this system are also summarized 
with respect to the core research being investigated. This expansion involves researchers 
located across the United States who are interested in analyzing and grid-enabling 
existing software applications and grid technology. 
 
Development of Parallel Computing 
 
In 1970s, the VAX timeshare resources dominated the computing scene, but these 
machines required high initial capital expenditures and very expensive annual 
maintenance costs. These timeshare resources also required very highly skilled users who 
were capable of dealing with CPU power constraints, restricted memory scenarios, and 
modest disk storage sys tems. In the first half of the 1980s, UNIX workstations became 
available and were more widely deployed than the VAX timeshare resources. However, 
while these early workstations continued to provide only limited CPU power, memory, 
and disk storage, they were much more accessible and user friendly than the VAX 
timeshares of the 1970s.  
 
More powerful UNIX desktop workstations, networking Ethernet, High Performance 
Parallel Interface (HPPI) and Fiber Distributed Data Interface (FDDI) networking, as 
well as distributed file systems and servers were deployed during the second half of the 
1980s. In an effort to utilize these relatively high-powered CPUs, with significantly 



increased memory and disk storage devices, a number of parallel languages, including 
P4, Express, and LINDA, began to appear [1,7].  See Table 1. 
 
During the early 1990s, desktop workstations began to be incorporated into distributed 
computing systems.  Further, the capabilities of CPUs, memory, and disk storage 
increased rapidly during this period. Asynchronous Transfer Mode (ATM) used for Wide 
Area Networks (WAN) allowed networks to efficiently carry services of the future. 
Network and computer performance increased by 1000 times and standards such as 
Message Passing Interface (MPI), High Performance Fortran (HPF), and Distributed 
Computing Environment (DCE) began to emerge [8]. 
 
PVM. Parallel Virtual Machine (PVM) is a software package that permits a 
heterogeneous collection of Unix and/or Windows computers connected together by a 
network to be used as a single parallel computer. The first version of PVM was written 
during the summer of 1989 at Oak Ridge National Laboratory. This initial version of 
PVM was used internally and not released publicly. Based on the internal success of 
PVM, Version 2 of the code was redesigned and written from scratch during February 
1991 at the lab’s sister institution, the University of Tennessee, Knoxville.  Version 2 of 
the code was publicly released in March of 1991. This version was intended to clean up 
and stabilize the system so that external users could reap the benefits of this parallel 
computing middleware. PVM Version 3 was redesigned from scratch, and a complete 
rewrite started in September 1992, with first release of the software in March 1993. 
While similar in spirit to version 2, version 3 includes features that did not fit the old 
framework, including fault tolerance, better portability and scalability. Three subsequent 
versions of PVM were released over the next 9 years.  The current version of the system 
is entitled PVM Version 3.4.4, which was released in September of 2001. Concurrent 
development of XPVM provided a graphical interface to the PVM console commands 
and information, along with several animated views to monitor the execution of PVM 
programs. These views provide information about the interactions among tasks in a PVM 
program in order to assist in debugging and performance tuning. XPVM Version 1.0 was 
released in November of 1996 and the latest XPVM Version is 1.2.5, released April 1998 
[2].  
 
MPI. The specification of the Message Passing Interface (MPI) standard 1.0 [3] was 
completed in April of 1994. This was the result of a community effort to try and define 
both the syntax and semantics of a core message-passing library that would be useful to a 
wide range of users and implemented on a wide range of Massively Parallel Processor 
(MPP) platforms. Clarifications were made and released in June 1995, where the major 
goals were portability, high performance, “common practice”, features process model, 
point-to-point communication, collective operations, and mechanisms for writing safe 
libraries. All major computer vendors supported the MPI standard and work began on 
MPI-2, where new functionality, dynamic process management, one-sided 
communication, cooperative I/O, C++ bindings, Fortran 90 additions, extended collective 
operations, and miscellaneous other functionality were added to the MPI-1 standard [4]. 
MPI-1.2 and MPI-2 were released at the same time in July of 1997. The main advantage 
of establishing a message-passing standard is portability. One of the goals of developing 



MPI is to provide MPP vendors with a clearly defined base set of routines that they can 
implement efficiently or, in some cases, improve scalability by providing hardware 
support. Local Area Multi-computer (LAM) development followed as an MPI 
programming environment and development system for heterogeneous computers on a 
network. LAM-MPI 6.1 was released in June 1998 and further development of a 
graphical user interface continued as XMPI 1.0 was released in January 1999. With 
LAM-MPI, a dedicated cluster or an existing network computing infrastructure can act as 
one parallel computer solving one problem and be monitored with a graphical user 
interface [5].  
 
 
Development of Grid Computing 
 
Integrating computational resources into parallel and distributed systems has become 
common practice since the early 1990s. A (computational) grid can be defined as a 
computing system in which computational resources, including computing, storage, 
databases, devices, sensors, and tools, are organized into a cohesive distributed system 
that spans multiple geographic and administrative domains.  In this section, we provide a 
very brief history of grid computing, focusing on the capabilities of several toolkits and 
software packages that are critical to the Center for Computational Research Grid (CCR-
Grid) that is the subject of this paper.  In order to provide a framework for the discussion 
that follows in this section, it is important to know that the CCR-Grid system will 
leverage many of the communication, authentication, concurrency, security, system 
monitoring, and error handling capabilities available in Globus, a critical public domain 
grid software package that has become the de facto standard in academic (and many 
industrial) settings. 
 
Globus. The Globus project was established in 1996.  It focuses on enabling the 
application of various grid concepts, predominantly in the domain of computational 
science and engineering.  The Globus project is centered at Argonne National Laboratory, 
the University of Southern California, and the University of Chicago, although numerous 
other research groups and laboratories have made significant contributions over the past 
several years.  Groups all over the world are using the open source Globus Toolkit to 
build cost-effective computational platforms.  An example of these efforts include 
designing smart instruments, where, for example, a microscope can be coupled to 
supercomputers, users, and databases, all available over a grid, where each of the items 
are physically located at distinct locations and each such item is governed by a distinct, 
though cooperating, management scenario.  Another popular use for grids is to provide 
large-scale desktops, where from a desktop, a user has access to a nearly ubiquitous  
computational grid that provides access to computationally- intensive disciplinary 
packages (e.g., computational chemistry).   
 
The open source Globus Toolkit [25] consists of a set of components, implemented as 
APIs (application programmer interfaces) written in the C programming language, that 
are designed to be useful for developing grid applications.  The major components follow 
(from www.globus.org). 



 
• The Globus Resource Allocation Manager (GRAM) provides resource allocation 

and process creation, monitoring, and management services.  GRAM 
implementations map requests expressed in a Resource Specification Language 
(RSL) into commands that may be submitted to local schedulers (e.g., 
Loadleveler, PBS, LSF). 

• The Grid Security Infrastructure (GSI) provides a single “sign-on, run-anywhere” 
authentication service.  GSI supports local control over access and the mapping 
from a global user identity to a local user identity.   

• The Monitoring and Discovery Service (MDS) is an extensible information 
service that combines data discovery mechanisms with Lightweight Directory 
Access Protocol (LDAP).  MDS provides a uniform framework for providing and 
accessing system configurations and status information, including server 
configurations, status of networks, and locations of replicated databases. 

• The Global Access to Secondary Storage (GASS) implements a variety of 
automatic and programmer-managed data movement and data access strategies, 
enabling programs running at remote locations to read and write local data. 

• Nexus and globus_io provide communication services for heterogeneous 
environments. 

• The Heartbeat Monitor (HBM) allows system administrators or users to detect 
the failure of system components or application processes. 

 
With the November, 2001 release of Globus Toolkit 2.0, eight firms (Compaq, Cray, 
SGI, Sun, Veridian, Fujitsu, Hitachi, and NEC) announced that they will develop 
optimized forms of the toolkit for their operating platforms in an effort to eventually 
provide a secure, distributed, multi-vendor grid computing system. Three other 
companies (Entropia, IBM, and Microsoft) simultaneously announced expansions of 
previous commitments to the Globus Project. Platform Computing has also recently 
released a supported version of the Globus Toolkit. In addition, IBM has recently joined 
in the development of the next-generation Globus Toolkit 3.0, to be based on Open Grid 
Services Architecture (OGSA) [23] specifications drafted by Foster, Tuecke, Kesselman 
and IBM colleagues.  
 
Condor.  Based on the observation that a large percentage of desktop compute cycles go 
unused, Condor (http://www.cs.wisc.edu/condor/) was designed to be a robust system 
that would scavenge unused cycles in networked workstations, while providing the owner 
of a workstation with the ultimate control as to when their workstation was made 
available to other users (e.g., evenings, weekends, lunch time, whenever it was not being 
utilized, etc.).  That is, Condor is designed to be a specialized workload management 
system for compute- intensive jobs, providing a job queue, scheduling policy, priority 
scheme, resource monitor, and resource management system. So, users may submit their 
sequential or parallel jobs to Condor, which places the jobs into a queue, chooses when 
and where to run the jobs based upon a policy, carefully monitors their progress, and 
ultimately informs the user upon completion.  Condor has been quite successful in 
managing large networks of workstations and commodity clusters. 
 



 
In 1988, a workload management system for computationally- intense applications was 
created by Michael Litzkow, who designed the first version of the Condor Resource 
Management system. The results of the Remote-Unix (RU) project, directed by David  
Dewitt, Raphael Finkel, and Marvin Solomon, provided mechanisms for handling 
environments with heterogeneous distributed resources. The work in the area of 
Distribute Resource Management (DRM), directed by Miron Livny, was also merged into 
Condor for load balancing distributed systems. The Condor management policies were 
provided by the distributed allocation and preemptive scheduling techniques developed 
by Matt Mutka [12,13]. 
 
The recent development of Condor-G, a grid-enabled version of Condor that utilizes 
Globus to handle issues that arise while coordinating a variety of organizations, including 
security and resource management, represent a major step forward in grid/distributed 
computing.  That is, Condor-G combines the inter-domain resource management 
protocols of the Globus Toolkit and the intra-domain resource and job management 
methods of Condor to allow the user to harness multi-domain resources as if they all 
belong to one personal domain [14,15].  
 
Legion. The Legion Project [10,26] was initiated in 1996 by Andrew Grimshaw, a 
faculty member at the  University of Virginia. The first public release of the Legion 
Technology was at Supercomputing ‘97. In June 1998, Grimshaw joined the Grid Forum 
as an original Steering Group member. The Grid Forum was a community driven 
organization for researchers who worked on distributed computing and grid technologies. 
In 2000, the Grid Forum merged with the Global Grid Forum (GGF) [37] to help promote 
common practices and interoperability between large-scale grid systems. The goal of 
Legion is to foster the utilization of standard object representations in the design of 
distributed systems.  The Legion Project capabilities include the following. 
 

• The current release of Legion offers Basic Fortran Support (BFS), which provides 
a set of Legion directives that can be embedded in Fortran code in the form of 
pseudo-comment lines.  

• The Mentat Programming Language (MPL) is an extension of C++ and is 
designed to help parallelize applications. 

• Applications using PVM can use the Legion core PVM interface to use Legion 
features in a PVM environment. PVM programs can be registered and run with 
special Legion tools.  

• Legion also has a core MPI interface, which lets MPI users take advantage of 
Legion features. All MPI features are supported in Legion MPI and there are 
special Legion tools for registering and running MPI programs.  

 
While Globus and Legion are often thought to have significant overlap in their grid-based 
computation goals, one may take the view that Globus places an emphasis on providing 
low-level services, while Legion promotes high- level programming models. 
 



In February 2001, Applied MetaComputing was founded by Grimshaw in an effort to 
commercialize the Legion technology. In June 2001, Applied MetaComputing officially 
re-launched as Avaki Corporation and continued the Data and Compute Grid 
development. Avaki released several versions of Compute Grid and Data Grid throughout 
2002 that enhanced many core capabilities [11]. Some of the features include the 
following. 
 

• Execute parallel or sequential jobs efficiently based on requirements and policies. 
• Enhance the current processing infrastructure without disrupting users or 

modifying applications. 
• Establish usage policies that allocate resources optimally across locations and 

departments. 
• Insulate users from system complexity, and reduce the burden on administrators. 
• Keep usage policies under control of local resource owners and utilize resources 

efficiently. 
 
Gridware & Sun Grid Engine. In 1990, Wolfgang Gentzsch founded a consulting and 
software development company called Genias Software. This company began the 
development of a prototype in 1992 for a distributed resource management system, later 
named Codine. From 1995 to 1999, Gentzsch and his staff participated in many early 
grid-computing projects, including Unicore, Autobench, Medusa, Julius, and Eroppa. In 
1999, Genias Software changed its name to Gridware and began the development of 
interfaces between Codine and open source grid projects, including Globus [18], Legion 
[10], Punch [9], and Cactus [16]. Sun Microsystems acquired Gridware in July of 2000 
and began work on the next generation of Codine, named the Sun Grid Engine software. 
In September of 2000, Sun delivered Sun Grid Engine 5.2 version for the Solaris 
Operating System. The Linux version was released January 2001 and by June 2001 over 
10,000 free downloads of the Sun Grid Engine software were made. Sun established the 
Grid Engine Project, placing all 500,000 lines of source code into the public domain via 
CollabNet. Currently, Sun has integrated the Sun Grid Engine system and the Sun Open 
Net Environment Portal server, so that users can administer a grid through a Web 
interface. The latest release of Sun Grid Engine software (Sun ONE platform) is version 
5.3 with an estimated 5,100 users worldwide [6]. 
 
 
Grid-Enabled Shake-and-Bake Proof-of-Concept 
 
The CCR-Grid proof-of-concept has been completed using a Client/Server framework 
including a dynamically created HTML Grid Console for monitoring parallel grid jobs. 
Results from this study are being used in the design of the production-level Globus-based 
CCR-Grid that will serve as a follow on.  In particula r, the proof-of-concept UNIX shell 
scripts and Client/Server framework will be replaced by HTML, Java Script, PHP, 
MySQL, phpMyAdmin, WSDL and the Globus Toolkit in the production-level CCR-
Grid. 
 



Problem Statement 
 
In order to implement a proof-of-concept CCR-Grid, we consider as an application a 
cost-effective solution to the problem of determining molecular crystal structures via 
direct methods as implemented in a grid setting.  We use the program Shake-and-Bake 
(SnB) as the application for a variety of reasons.  SnB was developed in Buffalo and is the 
program of choice for structure determination in many of the 500 laboratories that have 
acquired it.  In addition, the SnB program well understood by the authors, as the second 
author of this paper is one of the principle authors of the Shake-and-Bake methodology 
and the SnB program.  Finally, it is a computationally intensive program that can take 
advantage of the grid’s ability to present the user with a large-scale desktop or distributed 
supercomputer in order to perform computations that are equivalent to parameter studies, 
which are areas that the grid excels at. 
 
The SnB program uses a dual-space direct-methods procedure for determining crystal 
structures from X-ray diffraction data [19-22]. This program has been used in a routine 
fashion to solve difficult atomic resolution structures, containing as many as 1000 unique 
non-Hydrogen atoms, which could not be solved by traditional reciprocal-space routines. 
Recently, the focus of the Shake-and-Bake research team has been on the application of 
SnB to solve heavy-atom and anomalous-scattering substructures of much larger proteins 
provided that 3-4Å diffraction data can be measured.  In fact, while direct methods had 
been applied successfully to substructures containing on the order of a dozen selenium 
sites, SnB has been used to determine as many as 180 selenium sites.  Such solutions by 
SnB have led to the determination of complete structures containing hundreds of 
thousands of atoms.   
 
The Shake-and-Bake procedure consists of generating structure invariants and 
coordinates for random-atom trial structures.  Each such trial structure is subjected to a 
cyclical automated procedure that includes a Fourier routine to determine phase values 
from a proposed set of atoms (initially random), determination of a figure-of-merit, 
refining phases to locally optimize the figure-of-merit, computing a Fourier to produce an 
electron density map, and employing a peak-picking routine to examine the map and find 
the maxima.  These peaks are then considered to be atoms, and the cyclical process is 
repeated for a predetermined number of cycles.   
 
Trials are continually and simultaneously processed until a solution is discovered, based 
on the figure-of-merit.  The running time of this procedure ranges from minutes on PCs 
to months on supercomputers.  For each completed trial structure, the final value of the 
figure-of-merit is stored in a file, and a histogram routine can be run to determine 
whether or not a solution is likely present in the set of completed trial structures.  A 
bimodal distribution with significant separation is a typical indication that solutions are 
present, whereas a unimodal, bell-shaped distribution typically indicates a set comprised 
entirely of nonsolutions. 
 
The current premise is that the computing framework for this Shake-and-Bake need not 
be restricted to local computing resources.  Therefore, a grid-based solution to Shake-



and-Bake can afford scientists with limited local computing capabilities the opportunity 
to solve structures that would be beyond their means. 
  
Statement of Approach 
 
The Center for Computational Research at the University at Buffalo serves as an ideal 
testbed for producing a grid-based implementation of SnB.  In fact, the gapcon list [35] 
ranks the Center for Computational Research as the 8th most powerful supercomputing 
site in the world as of November 28, 2002. Further, CCR provides a diverse set of 
computational platforms, including the following systems.    
 

• 4000 processor Dell PentiumIII/Xeon Cluster (code name DNA RNA) 
• 64 processor SGI Origin 3800 (CROSBY) 
• 78 processor IBM SP2 (STILLS) 
• 150 processor SGI-Intel PentiumIII Cluster (NASH) 
• 82 processor Sun Ultra 5 Cluster (YOUNG) 
• 4 processor DEC alpha (MOONGLOWS) 
• 16 processor IBM 340 Cluster (MAMAS PAPAS) 
• 3 processor solar powered G4 briQ Cluster (BRIQ) 
• 604 processor Dell Pentium4 Cluster (JOPLIN) 
• IBM 44P Workstation (COASTERS) 
• Dual Processor SGI Octane (THEDOORS) 
• 6 Processor SGI Onyx (CREAM) 

 
The Client/Server (i.e., master/worker) configurations are designed for creating a simple 
grid that can be used to determine the necessary features of the final CCR-Grid 
implementation. The proof-of-concept grid configuration and definitions include the 
following. 
 

• The Grid Server is the unique master grid process on the CCR-Grid.  Users 
submit SnB jobs to the Grid Server.  In addition, the Grid Server is used to 
automatically configure and register Platform Servers, which control individual 
compute platforms, including managing load balancing across the grid in concert 
with such Platform Servers.  The Grid Server also maintains the trial database, 
including records of where trials have been sent for processing and results of trials 
that have been completed.   

• Platform Server processes are used to register and configure Node Servers, which 
manage SnB worker processes.  A Platform Server is also used to manage Block 
Queues (i.e., dispatched sets of SnB jobs) and report the status of Node Servers to 
the Grid Server. There is one Platform Server running per computational grid 
resource (platform) configured. 

• A Node Server process runs on a platform production node and manages the SnB 
application worker processes. The number of workers executed by the Node 
Server is proportional to the number of processors of the production node. 



• A series of Grid, Platform and Node Servers using TCP socket, and SSH secure 
tunneling/port forwarding facilities are used to configure the computational grid. 

• Each platform uses native queuing software (PBSpro [28], OpenPBS [27], 
Loadleveler [29], and LSF [30]) to submit the requested Node Server processes. 

• The Node Servers receive all trials to process from the Platform Server that they 
are registered with and then transmit the trial result back to the Platform Server. 

• The Platform Servers receive all trials to process from the Grid Server and 
transmit all Node Server trial solutions to the Grid Server. 

 
The master process, Grid Server, is used to manage and control all of the grid resources. 
This process can dynamically remove/add/display/control all grid resources. Note that it 
is important to request resources for the shortest time possible so that the resources can 
be released from the CCR-Grid back into production in its native mode. Each platform 
queuing system determines which production nodes are available for grid resources for 
the requested time. The Grid Server may attempt to add or delete resource production 
nodes during the lifetime of the grid, as needed, or when computational resources become 
available. The Grid Server is the only process that the end user communicates with 
directly.  The Grid Server can add or remove resources by using one of the three types of 
configurations shown in Figure1. 
 
The Client/Server Type 1 is the standard configuration used when the platform 
production nodes all have the same operating system architecture. The Grid Server 
communicates through network socket connections to a Relay Server normally located on 
the front-end of a production platform. The Grid Server and Relay Server must have 
public Internet addresses to make the necessary network connections and can be located 
anywhere geographically. The sole purpose of the Relay Server is to communicate 
information from the public addressed Grid Server and the internally addressed Platform 
Server. The Platform Server can then setup network socket connections to Node Server 
processes running on the platform production nodes. 
 
The Client/Server Type 2 is the firewall cluster configuration used when a Relay Server 
cannot connect to the Grid Server directly. The Grid Server communicates with the 
Platform Server that only has an internal Internet address through SSH encrypted tunnels 
setup on the cluster firewall machine. For convenience, the SSH tunnels can be setup 
from the Grid Server remotely and remain installed even after the grid lifetime has 
expired. The Platform Server can then setup network socket connections to Node Server 
processes running on the platform production nodes. 
 
The Client/Server Type 3 is used for a heterogeneous operating system cluster 
configuration. The Grid Server communicates with the Relay Server and Platform Server 
as in the standard configuration. The Node Servers in this configuration have different 
operating system architectures. The Platform Server is solely responsible for managing 
the heterogeneous Node Servers configuration. 
 
The proof-of-concept CCR-Grid can be monitored from any HTML 4 compliant web 
browser. The dynamic HTML front-end reports the following information (Figure 2): 



 
• Grid Server 

o Date 
o Parallel Run Time 
o Trial/Minute (rate of progress) 
o Completion Time (estimated remaining time / total completion time) 
o Serial Run Time (estimate) 
o Speedup (estimate) 
o Start Trial Number 
o Finish Trial Number 
o Number of Trials Executed / Total Trials 

• Platform Server Status 
o Platform – Picture / Architecture Type / Machine Name 
o Status – Idle / Working / Offline 
o Resources – Nodes / Total Process / Available Process / Running Process 
o Start Trial Number 
o Finish Trial Number 
o Number of Trials Executed / Total Trials 

• Console 
o Start Trial Number 
o Finish Trial Number 
o Total Trials (total number of trials to process) 
o Platform Server State – Block Queue / Float / Race 

 
This grid-enabled SnB application run shows many of the problems that can be 
encountered when submitting a job to the CCR-Grid. Since not all of the computational 
resources are dedicated for grid computing, any time that a user wishes to run a grid-
enabled application, a request must be submitted through the batch queue. If the 
production machines happen to be 100% utilized, the submitted request will be held in 
the respective platform queue until sufficient production nodes are available.  
 
Consider the run associated with Figure 2.  Note that the user started the grid-enabled 
SnB job before all of the computational resources were configured. The “IDLE” status at 
the top of the Platform Servers Status area indicates that four of the platforms are not 
currently processing any trials. The “OFFLINE” status associated with three of the 
platforms is also on, indicating that the submitted request for production nodes on those 
platforms has been queued.  Conversely, the CROSBY platform (refer to the itemized list 
of machines presented earlier in this section for a correlation between machine and 
machine name) shows a “READY” status, which means that after the grid-enabled SnB 
application run was initiated, the queued request for production nodes was submitted.  
 
This situation is commonplace when dealing with multiple independent heterogeneous 
platforms.  That is, platforms that become available after an application run has already 
started are configured and remain “IDLE” until a new application run is issued. The SnB 
application, as shown in Figure 2, was instructed to run 50,000 trials starting from 1 to 
50,000 with 9 Platform Servers and 319 nodes yielding 645 processes. From the 



dynamically created web page, one can see that the application has been running for 
43.55 minutes and processing trials at the rate of 260.76 trials per minute.  In addition, 
the estimated total completion time is 191.75 minutes with 148.20 minutes left in the run, 
and the estimated speedup over aggregate sequential computing is 601.46.  
 
Next, we consider the load balancing scheme used in our proof-of-concept analysis. The 
scheme consists of three phases, namely, Block Queue, Float, and Race. These phases are 
defined below. 
 

• Block Queues 
o Each Platform Server is given a block of trials to process from the Grid 

Server based on a platform load factor determined from the time required 
to process one trial. A Platform Server is completely responsible for 
submitting the assigned trials to its registered Node Servers for processing.  

o The Block Queues account for 85% of the total number of Shake-and-
Bake trials submitted for processing.  The remaining 15% of the trials are 
allocated to the Float queue.      

• Float 
o The Shake-and-Bake trials that have been reserved for Float are submitted 

individually to any Platform Server that requests more trials to process 
from the Grid Server. 

o The distribution of Float trials to Platform Servers is determined at 
runtime and is completely dynamic. 

o Any Platform Server in the grid can process the Float trials after their 
respective Block Queue has been completed. 

• Race 
o When a Platform Server requests more trials to processes from the Grid 

Server and the Float trials have been exhausted, the Grid Server queries its 
database of results and assigns trials that have been assigned, but not 
completed, to the requesting Platform Server for processing. This 
continues until solutions have been obtained and recorded in the Grid 
Server database for all requested trials. 

 
In terms of the Race Trials, the reader may note that there are a variety of situations under 
which allocated trials were not completed, including, but not limited to, the following. 
 

• A platform is still in the process of working on its Block Queue trials. 
• Trial results were lost during transmission. 
• The platform that processed a trial has gone offline or lost network connectivity 

without transmitting trial results. 
 
Thus, for whatever reason the trial result was not received, it will be resubmitted for 
processing during the Race phase. Therefore, the SnB grid application is fault tolerant 
with respect to assigning trials to multiple compute engines and will finish the requested 
application job as long as one Platform Server with one Node Server remains active and 
able to process trials. 



 
The number of trials assigned to every Platform Serve r is determined by initially timing 
one trial on every available compute engine.  Specifically, all Node Servers that have 
registered with a Platform Server are assigned identical SnB trials for processing by the  
Grid Server. The time recorded includes processing and network latency. The Grid Server 
automatically records the trial solution and timing information for each Node Server. The 
platform speed (Tp) can now be calculated as the harmonic mean of the respective 
platform’s Node Server solution times. Some variable definitions for the platform speed 
and load factors follow. 
 

• Pt is the total number of Platform Servers 
• Nt is the total number of Node Servers 
• Tp is the platform speed given in seconds 
• Tpm is the mean platform speed given in seconds 
• Tn is the node trial time given in seconds 
• Pp is the number of platform processes 

 
The platform speed is given by 
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calculated by 
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In order to take into consideration the number of platform processors, a Platform Load 
Factor (PLF) is calculated as 
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where it should be noted that all PLF values range from 0 – 1 and the PLF’s sum to 1 as a 
result of the above normalization, where the denominator denotes the “effective number 
of processes” for all Grid Platform Servers. The PLF values are used to determine the 
size of each of the Platform Servers Block Queues. 
 
The bars located in the Platform Server Status columns, as shown in Figure 2, indicate 
the percentage of the Block Queue that has been completed. For instance, the Grid Server 



assigned JOPLIN 39586 trials for its Block Queue, beginning at trial number 1558 and 
ending at trial number 41143.  From the snapshot given in Figure 2, we see that JOPLIN 
has thusfar completed 27% of its queue (10930 trials). The bars located in the Console 
column indicate the percentage of the total job trials that have been completed. Figure 3 
shows the state of the grid-enabled SnB application approximately two hours later. In this 
case, the Float Trials allocated to JOPLIN were completely processed and JOPLIN is 
now available to accept Race Trials.  That is, JOPLIN is prepared to process trials that 
have been assigned, but not completed, by other platforms.  In Figure 3 note that the 
JOPLIN status is “Race” and 97 % of the total SnB application trials have been 
completed. The total parallel run time is 183.6 minutes with an estimated time to 
completion of 4.27 minutes and an overall estimated speedup of 610.84. 
 
We have chosen this grid-enabled SnB application run to illustrate the importance of 
implementing robust forms of fault tolerance and load balancing. This is essential when 
using a wide range of heterogeneous computational platforms. The current load-
balancing scheme produces a robust fault tolerant system that drives the grid platforms 
toward 100% usage until the application job has been completed. Further research into 
more adaptive schemes of load balancing is currently being investigated along with 
incorporating methods derived from other researchers [34]. 
 
 
CCR Web Portal 
 
The CCR-Grid uses a web portal, as shown in Figure 4, for single point of access to grid-
enabled resources. The web server is setup with the Redhat Linux 7.3 operating system 
and Apache 1.3.26 HTTP server. The Apache server is an open-source HTTP server for 
UNIX and Windows and it provides a secure, efficient, and extensible platform for the 
grid web portal. The web portal is designed with Macromedia  MX, Macromedia 
Homesite, HTML, Java script and PHP scripting language software. The Java script is 
used for client side form verification and user support functionality. PHP 4.2.3 is 
configured with the Apache HTTP server for designing the web portal template pages 
and the creation of dynamic web pages easily and quickly. Furthermore, the PHP code 
does not have to be compiled as it is interpreted “on-the-fly” by the web server. This 
results in web pages that can be highly customized for an authenticated user as they 
browse the web portal for resources.  
 
During the proof-of-concept grid-enabling of SnB, it was evident that a fine grained 
authentication approach would be needed to manage several of the scientific applications. 
For example, researchers developing the SnB application may indeed wish to have all 
authenticated grid users be able to execute jobs and would like all documentation and 
database information available. Conversely, other researchers may have proprietary 
applications (data) that require the computational and data resources made available by 
the grid, but would like to limit the job execution access to selected departments within 
the University or possibly researchers located at remote locations. This can be 
accomplished by creating grid user profiles that contain the users standard information 
uid, name, organization, address, etc. and more specific information such as group id and 



access level information, as shown in Figure 5. This information is stored in a database 
and can be accessed through a PHP initiated query. MySQL 3.23.52 provides the speed 
and reliability required for this task and it is currently being used as the web portal 
database provider.  
 
Since there is much more information required for a grid user to effectively use the web 
portal, the software package PHPMyAdmin 2.3.2 is also installed on the web server. This 
tool can manage an entire MySQL-server or just a single database from a web interface 
and perform the following tasks quickly and easily: 
 

• create and drop databases 
• create, copy, drop and alter tables 
• delete, edit and add fields 
• execute any SQL-statement, even batch-queries 
• manage keys on fields 
• load text files into tables 
• create and read dumps of tables 
• export and import data to CSV values 
• administer multiple servers and single databases 
• check referential integrity 
• create complex queries automatically connecting required tables 
• create PDF graphics of your database layout 
 

The Globus Toolkit 2.2 [18,25] was installed on the web server and its Monitoring and 
Discovery Service (MDS) is used for monitoring the grid computational resources and 
the web portal server. The MDS includes a Grid Resource Information Service (GRIS) 
[18] that obtains platform information and Grid Index Information Service (GIIS) [18] 
that aggregates the information for an entire grid. MDS provides the necessary tools to 
build an LDAP-based information infrastructure for the computational grid and 
OpenLDAP is used to host the grid resource information directory. The LDAP server 
provides the following types of data: 
 

• platform type and instruction set architecture 
• operating system (host OS) name and version 
• CPU information (type, number of CPUs, version, speed, cache, etc.) 
• physical memory (size, free space, etc.) 
• virtual memory (size, free space, etc.) 
• network interface information (machine names and addresses) 
• file system summary (size, free space, etc.) 

 
The web portal GIIS aggregates the LDAP-based information of all the grid 
computational resources and can be monitored remotely. The Softerra LDAP Browser 2.4 
is used for remotely viewing this information as it provides a user- friendly interface. This 
software is a lightweight version of Softerra LDAP Administrator and can be obtained as 
freeware. The web portal dynamic PHP web pages can also query and display the LDAP-



based information for the grid users eliminating the need to use a secondary LDAP 
browser interface.  
 
There is currently a migration from Globus Toolkit 2.2 to Globus Toolkit 3.0 [18] for 
projects that have a lifetime of more than one year and that do not have significant 
dependence on existing grid infrastructure provided Globus Toolkit 2.2. Since this is the 
case for the CCR-Grid, several additions will be made to the current web portal software 
suite in order to incorporate the new Globus Toolkit. Globus Toolkit 3.0 is based on the 
Open Grid Service Architecture (OGSA) [23] mechanisms, which address architectural 
issues related to the requirements and interrelationships of Grid Services. A Grid Service 
is a Web Service that conforms to a set of conventions for controlled, fault resilient and 
secure management.  
 
The Grid Service clients can be written in any language that has bindings to the Web 
Services Description Language (WSDL) [24]. The Web Services Description Language 
for Java Toolkit (WSDL4J) 1.0 allows the creation, representation, and manipulation of 
WSDL documents describing services. The Hosting Environment that can provide the 
core capabilities that allow clients to connect to services, service invocation, and resource 
management is Apache/AXIS 1.1. Apache AXIS is an implementation of the SOAP 
(“Simple Object Access Protocol”) submission to W3C (“World Wide Web 
Consortium”). SOAP is a lightweight protocol for exchange of information in a 
decentralized, distributed environment. It is an XML based protocol that consists of three 
parts. 
 

• SOAP is an envelope that defines a framework for describing what is in a 
message and how to process it,  

• a set of encoding rules for expressing instances of application-defined datatypes, 
and 

• a convention for representing remote procedure calls and responses.  
 
An XML parser in Java called Xerces2 2.2.1 is needed for parsing and generating XML 
documents for Apache AXIS and is also used during development of the web portal 
extensively. 
 
Apache Ant 1.5.1 is a Java-based build tool for developing software across multiple 
platforms and J2EETM 1.4 are required for Open Grid Service Infrastructure (OGSI) [18] 
which addresses detailed specifications of the interfaces that a service must implement.  
J2EE bases them on standardized, modular components, by providing a complete set of 
services to those components, and by handling many details of application behavior 
automatically, without complex programming. The J2EE platform is the foundation 
technology of the Sun ONE platform. 
 
The web portal dynamic PHP web pages that extract information from the LDAP server 
will now use a collection of classes and resources to process XML with PHP as the 
Globus Toolkit 3.0 Index Service Data is available only in XML form. There is no need 
for a separate GRIS as OGSA standard service data elements and FindServiceData 



interfaces enable any Globus Toolkit 3.0 OGSA service to act as their own GRIS. The 
Globus Toolkit 3.0 Index Service provides an information aggregation service that is 
more extensible than the Globus Toolkit 2.2 GIIS, furthermore the Index service and the 
GIIS are not compatible. 
 
Note the web portal development integrates several software packages and toolkits in 
order to produce a robust and sustainable system flexible enough to incorporate many 
different scientific and engineering applications. Each grid-enabled application can be 
used by all grid users and also use all of the available grid resources or be restricted to a 
very well defined subset of grid users and resources. The ability to control these aspects 
is very important as performance prediction and load balancing of grid-enabled scientific 
applications on the grid can be very challenging, especially when wide ranges of 
computational power and network latency exist. 
 
CCR Data Grid Design 
 
Early in 2002, the Center for Computational Research developed a Storage Area Network 
(SAN) to meet critical ubiquitous storage and backup requirements in the Center.  An 
overview of this HP/Compaq/DEC SAN is shown in Figure 6. The system hardware 
includes 24 TB of native disk storage, 24 HP Alpha servers running a Tru64 Sierra 
Cluster, 170 TB native (340 TB compressed) tape storage over two 595 slot, and 8 drive 
SDLT tape libraries. The system is designed to exceed 2.5GB/sec streaming I/O from a 
Fibre Channel infrastructure capable of delivering 9.6GB/sec of I/O and 777.6GB/hour 
native (1.555TB/hour compressed) of tape backup throughput. It is expected that this 
system will be fully operational in 1H03. 
 
Due to the extensive delay in acquiring and implementing this SAN, the data 
infrastructure requirements for the CCR-Grid are presently being met by the following 
alternative distributed resource specific solutions : 
 

• a 48 GB General Parallel File System (GPFS) served by the IBM SP2 
• a 1 TB Parallel Virtual File System (PVFS) served by a Dell Xeon Cluster 
• a 0.5 TB Networked File System (NFS) served by a Dell Xeon 6600 Server 
• a 16 TB Redhat Advanced Server file system served by a Dell Xeon Cluster 
• a STOREDGE L400 with two 20 GB drives, 21 slots, 21 GB/hour native served 

by a Solaris E250 
 
Plans for designing and implementing a data grid infrastructure incorporating the new 
SAN and the current Center hardware are currently underway. 
 
CCR Grid Collaboration Expansion 
 
Several interdisciplinary research projects have successfully used the grid as a tool in 
order to take advantage of dynamic databases and a variety of compute platforms around 
the world.  In addition to supporting critical applications that can take advantage of a 



grid, another major focus of the CCR-Grid project is to foster collaborations between 
researchers at geographically distributed locations. Geographically distributed scientific 
collaborations are supported by the Access Grid (http://www.accessgrid.org/agdp/) for 
group-to-group interactions, as well as by a computational grid that will allow scientists 
to work together in a tightly integrated fashion.  Some of the current projects are 
summarized below, where the geography is shown in Figure 7. 
 

• UCLA, Prakashan Korambath, High Performance Computing Consultant, 
Academic Technology Services 

o CCR Grid and UCLA Sun Grid connectivity study investigation 
§ network latency 
§ data Migration Bandwidth 
§ grid Load Balancing 
§ grid Performance Monitoring 
§ interoperability of Globus Toolkit and Sun Grid Engine 
§ grid-enabling of scientific and engineering applications 

• Hauptman-Woodward Medical Research Institute (HWI), Russ Miller Ph.D., 
Senior Research Scientist 

o CCR Grid and HWI grid-enabling of Shake-and-Bake application [19-22] 
§ automated grid application tuning 
§ grid-based Data Mining 
§ grid-based data warehousing 
§ virtual collaboration 
§ Genetic Algorithm optimization of grid-enabled SnB 

• Johns Hopkins University (JHU), Roger Ghanem Ph.D., Director, Center for 
Uncertainty Analysis and Management 

o Optimal Structural System Design [33] 
§ Risk Assessment 
§ Risk Mitigation 
§ grid-enabled computational models 
§ data warehousing and migration 

• University of Iowa (UIOWA), Keri C. Hornbuckle, Ph.D., Associate Professor, 
Department of Civil and Environmental Engineering 

o Fate and transport of persistent organic pollutants in nature systems 
§ Lake Michigan Mass Balance [32] 
§ Lake Michigan Mass Balance lake-wide analysis 
§ Lake Michigan atmospheric PCB fate and transport [31,32] 
§ grid-enabled atmospheric PCB congener analysis 

 
 
Future Directions 
 
In the 1980s, the National Science Foundation created the NSFnet that was intended to 
give scientific researchers easy access to its new supercomputer centers. From this 
modest beginning, smaller networks merged with NSFnet again and to form what is now 
known as the Internet. Computational, group-to-group, and data grids are forming in a 



very similar fashion and are poised to have the same explosion of connectivity. Grid 
services are paving the way for a broad based organized e-commerce, educational, 
scientific and data grid framework that can easily span the globe. Soon, the dependence 
of hard-wired interconnected grid resources will even give way to wireless highly 
available Grid Services that are accessed through dynamic web portals. 
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Parallel Language Description 
P4 P4 is a library of macros and subroutines developed at Argonne National 

Laboratory for programming a variety of parallel machines. The p4 system supports 
both the shared-memory model (based on monitors) and the distributed-memory 
model (using message-passing) [1,7]. 

Express The Express system is a set of libraries for communication, I/O, and parallel 
graphics. Extended I/O routines enable parallel input and output, and a similar set 
of routines are provided for graphical displays from multiple concurrent processes. 
The toolkit is developed and marketed commercially by ParaSoft Corporation [1].  

LINDA LINDA is a concurrent programming model that has evolved from a Yale 
University research project. The primary concept in Linda is that of a ``tuple-
space'', an abstraction via which cooperating processes communicate. This central 
theme of Linda has been proposed as an alternative paradigm to the two traditional 
methods of parallel processing: that based on shared memory, and that based on 
message passing [1]. 

 
 

Table 1: Parallel Computing Languages. 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 1: Client/Server configuration types for grid-enabled Shake-and-Bake application. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2: Dynamic HTML front-end for grid-enabled Shake-and-Bake application. 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3: Dynamic HTML front-end for grid-enabled Shake-and-Bake application load 
balancing and fault tolerance. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



 
 

Figure 4: University at Buffalo Center for Computational Research Grid Web Portal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 5: Grid portal CCR Grid database schema (Courtesy of Steven M. Gallo, Database 
Administrator, Center for Computational Research). 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 



Figure 6: Center for Computational Research Storage Area Network design and 
integration with CCR Grid computational resources (Courtesy of Tony Kew, Storage 
Area Network Administrator, Center for Computational Research). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 7: Buffalo-CCR proposed collaborative computational and data grid. 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 


