
Grid Computing in Buffalo, New York

Mark L. Green* and Russ Miller**

* Center for Computational Research, University at Buffalo, 9 Norton Hall, Buffalo, New York 14260; Civil, Structural
and Environmental Engineering, University at Buffalo, 240 Ketter Hall, Buffalo, New York 14260, (716) 645-6500
x522, mlgreen@ccr.buffalo.edu

** Center for Computational Research, University at Buffalo, 9 Norton Hall, Buffalo, New York 14260; Department of
Computer Science and Engineering, Box 602000, University at Buffalo, Buffalo, New York 14260, (716) 645-6500
x502, miller@buffalo.edu

Abstract

A computational and data grid developed at the Center for Computational Research in
Buffalo, New York, will provide a heterogeneous platform to enable scientific and
engineering applications to run in a Buffalo-centric grid-based setting. A proof-of-
concept heterogeneous grid has been developed using a critical scientific application in
the field of structural biology. The design and functionality of the prototype grid web
portal is described, along with plans for a production level grid system based on Globus.
Several projects covering a collaborative expansion of this system are also summarized
with respect to the core research being investigated. This expansion involves researchers
located across the United States who are interested in analyzing and grid-enabling
existing software applications and grid technology.

Development of Parallel Computing

In 1970s, the VAX timeshare resources dominated the computing scene, but these
machines required high initial capital expenditures and very expensive annual
maintenance costs. These timeshare resources also required very highly skilled users who
were capable of dealing with CPU power constraints, restricted memory scenarios, and
modest disk storage sys tems. In the first half of the 1980s, UNIX workstations became
available and were more widely deployed than the VAX timeshare resources. However,
while these early workstations continued to provide only limited CPU power, memory,
and disk storage, they were much more accessible and user friendly than the VAX
timeshares of the 1970s.

More powerful UNIX desktop workstations, networking Ethernet, High Performance
Parallel Interface (HPPI) and Fiber Distributed Data Interface (FDDI) networking, as
well as distributed file systems and servers were deployed during the second half of the
1980s. In an effort to utilize these relatively high-powered CPUs, with significantly

increased memory and disk storage devices, a number of parallel languages, including
P4, Express, and LINDA, began to appear [1,7]. See Table 1.

During the early 1990s, desktop workstations began to be incorporated into distributed
computing systems. Further, the capabilities of CPUs, memory, and disk storage
increased rapidly during this period. Asynchronous Transfer Mode (ATM) used for Wide
Area Networks (WAN) allowed networks to efficiently carry services of the future.
Network and computer performance increased by 1000 times and standards such as
Message Passing Interface (MPI), High Performance Fortran (HPF), and Distributed
Computing Environment (DCE) began to emerge [8].

PVM. Parallel Virtual Machine (PVM) is a software package that permits a
heterogeneous collection of Unix and/or Windows computers connected together by a
network to be used as a single parallel computer. The first version of PVM was written
during the summer of 1989 at Oak Ridge National Laboratory. This initial version of
PVM was used internally and not released publicly. Based on the internal success of
PVM, Version 2 of the code was redesigned and written from scratch during February
1991 at the lab’s sister institution, the University of Tennessee, Knoxville. Version 2 of
the code was publicly released in March of 1991. This version was intended to clean up
and stabilize the system so that external users could reap the benefits of this parallel
computing middleware. PVM Version 3 was redesigned from scratch, and a complete
rewrite started in September 1992, with first release of the software in March 1993.
While similar in spirit to version 2, version 3 includes features that did not fit the old
framework, including fault tolerance, better portability and scalability. Three subsequent
versions of PVM were released over the next 9 years. The current version of the system
is entitled PVM Version 3.4.4, which was released in September of 2001. Concurrent
development of XPVM provided a graphical interface to the PVM console commands
and information, along with several animated views to monitor the execution of PVM
programs. These views provide information about the interactions among tasks in a PVM
program in order to assist in debugging and performance tuning. XPVM Version 1.0 was
released in November of 1996 and the latest XPVM Version is 1.2.5, released April 1998
[2].

MPI. The specification of the Message Passing Interface (MPI) standard 1.0 [3] was
completed in April of 1994. This was the result of a community effort to try and define
both the syntax and semantics of a core message-passing library that would be useful to a
wide range of users and implemented on a wide range of Massively Parallel Processor
(MPP) platforms. Clarifications were made and released in June 1995, where the major
goals were portability, high performance, “common practice”, features process model,
point-to-point communication, collective operations, and mechanisms for writing safe
libraries. All major computer vendors supported the MPI standard and work began on
MPI-2, where new functionality, dynamic process management, one-sided
communication, cooperative I/O, C++ bindings, Fortran 90 additions, extended collective
operations, and miscellaneous other functionality were added to the MPI-1 standard [4].
MPI-1.2 and MPI-2 were released at the same time in July of 1997. The main advantage
of establishing a message-passing standard is portability. One of the goals of developing

MPI is to provide MPP vendors with a clearly defined base set of routines that they can
implement efficiently or, in some cases, improve scalability by providing hardware
support. Local Area Multi-computer (LAM) development followed as an MPI
programming environment and development system for heterogeneous computers on a
network. LAM-MPI 6.1 was released in June 1998 and further development of a
graphical user interface continued as XMPI 1.0 was released in January 1999. With
LAM-MPI, a dedicated cluster or an existing network computing infrastructure can act as
one parallel computer solving one problem and be monitored with a graphical user
interface [5].

Development of Grid Computing

Integrating computational resources into parallel and distributed systems has become
common practice since the early 1990s. A (computational) grid can be defined as a
computing system in which computational resources, including computing, storage,
databases, devices, sensors, and tools, are organized into a cohesive distributed system
that spans multiple geographic and administrative domains. In this section, we provide a
very brief history of grid computing, focusing on the capabilities of several toolkits and
software packages that are critical to the Center for Computational Research Grid (CCR-
Grid) that is the subject of this paper. In order to provide a framework for the discussion
that follows in this section, it is important to know that the CCR-Grid system will
leverage many of the communication, authentication, concurrency, security, system
monitoring, and error handling capabilities available in Globus, a critical public domain
grid software package that has become the de facto standard in academic (and many
industrial) settings.

Globus. The Globus project was established in 1996. It focuses on enabling the
application of various grid concepts, predominantly in the domain of computational
science and engineering. The Globus project is centered at Argonne National Laboratory,
the University of Southern California, and the University of Chicago, although numerous
other research groups and laboratories have made significant contributions over the past
several years. Groups all over the world are using the open source Globus Toolkit to
build cost-effective computational platforms. An example of these efforts include
designing smart instruments, where, for example, a microscope can be coupled to
supercomputers, users, and databases, all available over a grid, where each of the items
are physically located at distinct locations and each such item is governed by a distinct,
though cooperating, management scenario. Another popular use for grids is to provide
large-scale desktops, where from a desktop, a user has access to a nearly ubiquitous
computational grid that provides access to computationally- intensive disciplinary
packages (e.g., computational chemistry).

The open source Globus Toolkit [25] consists of a set of components, implemented as
APIs (application programmer interfaces) written in the C programming language, that
are designed to be useful for developing grid applications. The major components follow
(from www.globus.org).

• The Globus Resource Allocation Manager (GRAM) provides resource allocation

and process creation, monitoring, and management services. GRAM
implementations map requests expressed in a Resource Specification Language
(RSL) into commands that may be submitted to local schedulers (e.g.,
Loadleveler, PBS, LSF).

• The Grid Security Infrastructure (GSI) provides a single “sign-on, run-anywhere”
authentication service. GSI supports local control over access and the mapping
from a global user identity to a local user identity.

• The Monitoring and Discovery Service (MDS) is an extensible information
service that combines data discovery mechanisms with Lightweight Directory
Access Protocol (LDAP). MDS provides a uniform framework for providing and
accessing system configurations and status information, including server
configurations, status of networks, and locations of replicated databases.

• The Global Access to Secondary Storage (GASS) implements a variety of
automatic and programmer-managed data movement and data access strategies,
enabling programs running at remote locations to read and write local data.

• Nexus and globus_io provide communication services for heterogeneous
environments.

• The Heartbeat Monitor (HBM) allows system administrators or users to detect
the failure of system components or application processes.

With the November, 2001 release of Globus Toolkit 2.0, eight firms (Compaq, Cray,
SGI, Sun, Veridian, Fujitsu, Hitachi, and NEC) announced that they will develop
optimized forms of the toolkit for their operating platforms in an effort to eventually
provide a secure, distributed, multi-vendor grid computing system. Three other
companies (Entropia, IBM, and Microsoft) simultaneously announced expansions of
previous commitments to the Globus Project. Platform Computing has also recently
released a supported version of the Globus Toolkit. In addition, IBM has recently joined
in the development of the next-generation Globus Toolkit 3.0, to be based on Open Grid
Services Architecture (OGSA) [23] specifications drafted by Foster, Tuecke, Kesselman
and IBM colleagues.

Condor. Based on the observation that a large percentage of desktop compute cycles go
unused, Condor (http://www.cs.wisc.edu/condor/) was designed to be a robust system
that would scavenge unused cycles in networked workstations, while providing the owner
of a workstation with the ultimate control as to when their workstation was made
available to other users (e.g., evenings, weekends, lunch time, whenever it was not being
utilized, etc.). That is, Condor is designed to be a specialized workload management
system for compute- intensive jobs, providing a job queue, scheduling policy, priority
scheme, resource monitor, and resource management system. So, users may submit their
sequential or parallel jobs to Condor, which places the jobs into a queue, chooses when
and where to run the jobs based upon a policy, carefully monitors their progress, and
ultimately informs the user upon completion. Condor has been quite successful in
managing large networks of workstations and commodity clusters.

In 1988, a workload management system for computationally- intense applications was
created by Michael Litzkow, who designed the first version of the Condor Resource
Management system. The results of the Remote-Unix (RU) project, directed by David
Dewitt, Raphael Finkel, and Marvin Solomon, provided mechanisms for handling
environments with heterogeneous distributed resources. The work in the area of
Distribute Resource Management (DRM), directed by Miron Livny, was also merged into
Condor for load balancing distributed systems. The Condor management policies were
provided by the distributed allocation and preemptive scheduling techniques developed
by Matt Mutka [12,13].

The recent development of Condor-G, a grid-enabled version of Condor that utilizes
Globus to handle issues that arise while coordinating a variety of organizations, including
security and resource management, represent a major step forward in grid/distributed
computing. That is, Condor-G combines the inter-domain resource management
protocols of the Globus Toolkit and the intra-domain resource and job management
methods of Condor to allow the user to harness multi-domain resources as if they all
belong to one personal domain [14,15].

Legion. The Legion Project [10,26] was initiated in 1996 by Andrew Grimshaw, a
faculty member at the University of Virginia. The first public release of the Legion
Technology was at Supercomputing ‘97. In June 1998, Grimshaw joined the Grid Forum
as an original Steering Group member. The Grid Forum was a community driven
organization for researchers who worked on distributed computing and grid technologies.
In 2000, the Grid Forum merged with the Global Grid Forum (GGF) [37] to help promote
common practices and interoperability between large-scale grid systems. The goal of
Legion is to foster the utilization of standard object representations in the design of
distributed systems. The Legion Project capabilities include the following.

• The current release of Legion offers Basic Fortran Support (BFS), which provides
a set of Legion directives that can be embedded in Fortran code in the form of
pseudo-comment lines.

• The Mentat Programming Language (MPL) is an extension of C++ and is
designed to help parallelize applications.

• Applications using PVM can use the Legion core PVM interface to use Legion
features in a PVM environment. PVM programs can be registered and run with
special Legion tools.

• Legion also has a core MPI interface, which lets MPI users take advantage of
Legion features. All MPI features are supported in Legion MPI and there are
special Legion tools for registering and running MPI programs.

While Globus and Legion are often thought to have significant overlap in their grid-based
computation goals, one may take the view that Globus places an emphasis on providing
low-level services, while Legion promotes high- level programming models.

In February 2001, Applied MetaComputing was founded by Grimshaw in an effort to
commercialize the Legion technology. In June 2001, Applied MetaComputing officially
re-launched as Avaki Corporation and continued the Data and Compute Grid
development. Avaki released several versions of Compute Grid and Data Grid throughout
2002 that enhanced many core capabilities [11]. Some of the features include the
following.

• Execute parallel or sequential jobs efficiently based on requirements and policies.
• Enhance the current processing infrastructure without disrupting users or

modifying applications.
• Establish usage policies that allocate resources optimally across locations and

departments.
• Insulate users from system complexity, and reduce the burden on administrators.
• Keep usage policies under control of local resource owners and utilize resources

efficiently.

Gridware & Sun Grid Engine. In 1990, Wolfgang Gentzsch founded a consulting and
software development company called Genias Software. This company began the
development of a prototype in 1992 for a distributed resource management system, later
named Codine. From 1995 to 1999, Gentzsch and his staff participated in many early
grid-computing projects, including Unicore, Autobench, Medusa, Julius, and Eroppa. In
1999, Genias Software changed its name to Gridware and began the development of
interfaces between Codine and open source grid projects, including Globus [18], Legion
[10], Punch [9], and Cactus [16]. Sun Microsystems acquired Gridware in July of 2000
and began work on the next generation of Codine, named the Sun Grid Engine software.
In September of 2000, Sun delivered Sun Grid Engine 5.2 version for the Solaris
Operating System. The Linux version was released January 2001 and by June 2001 over
10,000 free downloads of the Sun Grid Engine software were made. Sun established the
Grid Engine Project, placing all 500,000 lines of source code into the public domain via
CollabNet. Currently, Sun has integrated the Sun Grid Engine system and the Sun Open
Net Environment Portal server, so that users can administer a grid through a Web
interface. The latest release of Sun Grid Engine software (Sun ONE platform) is version
5.3 with an estimated 5,100 users worldwide [6].

Grid-Enabled Shake-and-Bake Proof-of-Concept

The CCR-Grid proof-of-concept has been completed using a Client/Server framework
including a dynamically created HTML Grid Console for monitoring parallel grid jobs.
Results from this study are being used in the design of the production-level Globus-based
CCR-Grid that will serve as a follow on. In particula r, the proof-of-concept UNIX shell
scripts and Client/Server framework will be replaced by HTML, Java Script, PHP,
MySQL, phpMyAdmin, WSDL and the Globus Toolkit in the production-level CCR-
Grid.

Problem Statement

In order to implement a proof-of-concept CCR-Grid, we consider as an application a
cost-effective solution to the problem of determining molecular crystal structures via
direct methods as implemented in a grid setting. We use the program Shake-and-Bake
(SnB) as the application for a variety of reasons. SnB was developed in Buffalo and is the
program of choice for structure determination in many of the 500 laboratories that have
acquired it. In addition, the SnB program well understood by the authors, as the second
author of this paper is one of the principle authors of the Shake-and-Bake methodology
and the SnB program. Finally, it is a computationally intensive program that can take
advantage of the grid’s ability to present the user with a large-scale desktop or distributed
supercomputer in order to perform computations that are equivalent to parameter studies,
which are areas that the grid excels at.

The SnB program uses a dual-space direct-methods procedure for determining crystal
structures from X-ray diffraction data [19-22]. This program has been used in a routine
fashion to solve difficult atomic resolution structures, containing as many as 1000 unique
non-Hydrogen atoms, which could not be solved by traditional reciprocal-space routines.
Recently, the focus of the Shake-and-Bake research team has been on the application of
SnB to solve heavy-atom and anomalous-scattering substructures of much larger proteins
provided that 3-4Å diffraction data can be measured. In fact, while direct methods had
been applied successfully to substructures containing on the order of a dozen selenium
sites, SnB has been used to determine as many as 180 selenium sites. Such solutions by
SnB have led to the determination of complete structures containing hundreds of
thousands of atoms.

The Shake-and-Bake procedure consists of generating structure invariants and
coordinates for random-atom trial structures. Each such trial structure is subjected to a
cyclical automated procedure that includes a Fourier routine to determine phase values
from a proposed set of atoms (initially random), determination of a figure-of-merit,
refining phases to locally optimize the figure-of-merit, computing a Fourier to produce an
electron density map, and employing a peak-picking routine to examine the map and find
the maxima. These peaks are then considered to be atoms, and the cyclical process is
repeated for a predetermined number of cycles.

Trials are continually and simultaneously processed until a solution is discovered, based
on the figure-of-merit. The running time of this procedure ranges from minutes on PCs
to months on supercomputers. For each completed trial structure, the final value of the
figure-of-merit is stored in a file, and a histogram routine can be run to determine
whether or not a solution is likely present in the set of completed trial structures. A
bimodal distribution with significant separation is a typical indication that solutions are
present, whereas a unimodal, bell-shaped distribution typically indicates a set comprised
entirely of nonsolutions.

The current premise is that the computing framework for this Shake-and-Bake need not
be restricted to local computing resources. Therefore, a grid-based solution to Shake-

and-Bake can afford scientists with limited local computing capabilities the opportunity
to solve structures that would be beyond their means.

Statement of Approach

The Center for Computational Research at the University at Buffalo serves as an ideal
testbed for producing a grid-based implementation of SnB. In fact, the gapcon list [35]
ranks the Center for Computational Research as the 8th most powerful supercomputing
site in the world as of November 28, 2002. Further, CCR provides a diverse set of
computational platforms, including the following systems.

• 4000 processor Dell PentiumIII/Xeon Cluster (code name DNA RNA)
• 64 processor SGI Origin 3800 (CROSBY)
• 78 processor IBM SP2 (STILLS)
• 150 processor SGI-Intel PentiumIII Cluster (NASH)
• 82 processor Sun Ultra 5 Cluster (YOUNG)
• 4 processor DEC alpha (MOONGLOWS)
• 16 processor IBM 340 Cluster (MAMAS PAPAS)
• 3 processor solar powered G4 briQ Cluster (BRIQ)
• 604 processor Dell Pentium4 Cluster (JOPLIN)
• IBM 44P Workstation (COASTERS)
• Dual Processor SGI Octane (THEDOORS)
• 6 Processor SGI Onyx (CREAM)

The Client/Server (i.e., master/worker) configurations are designed for creating a simple
grid that can be used to determine the necessary features of the final CCR-Grid
implementation. The proof-of-concept grid configuration and definitions include the
following.

• The Grid Server is the unique master grid process on the CCR-Grid. Users
submit SnB jobs to the Grid Server. In addition, the Grid Server is used to
automatically configure and register Platform Servers, which control individual
compute platforms, including managing load balancing across the grid in concert
with such Platform Servers. The Grid Server also maintains the trial database,
including records of where trials have been sent for processing and results of trials
that have been completed.

• Platform Server processes are used to register and configure Node Servers, which
manage SnB worker processes. A Platform Server is also used to manage Block
Queues (i.e., dispatched sets of SnB jobs) and report the status of Node Servers to
the Grid Server. There is one Platform Server running per computational grid
resource (platform) configured.

• A Node Server process runs on a platform production node and manages the SnB
application worker processes. The number of workers executed by the Node
Server is proportional to the number of processors of the production node.

• A series of Grid, Platform and Node Servers using TCP socket, and SSH secure
tunneling/port forwarding facilities are used to configure the computational grid.

• Each platform uses native queuing software (PBSpro [28], OpenPBS [27],
Loadleveler [29], and LSF [30]) to submit the requested Node Server processes.

• The Node Servers receive all trials to process from the Platform Server that they
are registered with and then transmit the trial result back to the Platform Server.

• The Platform Servers receive all trials to process from the Grid Server and
transmit all Node Server trial solutions to the Grid Server.

The master process, Grid Server, is used to manage and control all of the grid resources.
This process can dynamically remove/add/display/control all grid resources. Note that it
is important to request resources for the shortest time possible so that the resources can
be released from the CCR-Grid back into production in its native mode. Each platform
queuing system determines which production nodes are available for grid resources for
the requested time. The Grid Server may attempt to add or delete resource production
nodes during the lifetime of the grid, as needed, or when computational resources become
available. The Grid Server is the only process that the end user communicates with
directly. The Grid Server can add or remove resources by using one of the three types of
configurations shown in Figure1.

The Client/Server Type 1 is the standard configuration used when the platform
production nodes all have the same operating system architecture. The Grid Server
communicates through network socket connections to a Relay Server normally located on
the front-end of a production platform. The Grid Server and Relay Server must have
public Internet addresses to make the necessary network connections and can be located
anywhere geographically. The sole purpose of the Relay Server is to communicate
information from the public addressed Grid Server and the internally addressed Platform
Server. The Platform Server can then setup network socket connections to Node Server
processes running on the platform production nodes.

The Client/Server Type 2 is the firewall cluster configuration used when a Relay Server
cannot connect to the Grid Server directly. The Grid Server communicates with the
Platform Server that only has an internal Internet address through SSH encrypted tunnels
setup on the cluster firewall machine. For convenience, the SSH tunnels can be setup
from the Grid Server remotely and remain installed even after the grid lifetime has
expired. The Platform Server can then setup network socket connections to Node Server
processes running on the platform production nodes.

The Client/Server Type 3 is used for a heterogeneous operating system cluster
configuration. The Grid Server communicates with the Relay Server and Platform Server
as in the standard configuration. The Node Servers in this configuration have different
operating system architectures. The Platform Server is solely responsible for managing
the heterogeneous Node Servers configuration.

The proof-of-concept CCR-Grid can be monitored from any HTML 4 compliant web
browser. The dynamic HTML front-end reports the following information (Figure 2):

• Grid Server

o Date
o Parallel Run Time
o Trial/Minute (rate of progress)
o Completion Time (estimated remaining time / total completion time)
o Serial Run Time (estimate)
o Speedup (estimate)
o Start Trial Number
o Finish Trial Number
o Number of Trials Executed / Total Trials

• Platform Server Status
o Platform – Picture / Architecture Type / Machine Name
o Status – Idle / Working / Offline
o Resources – Nodes / Total Process / Available Process / Running Process
o Start Trial Number
o Finish Trial Number
o Number of Trials Executed / Total Trials

• Console
o Start Trial Number
o Finish Trial Number
o Total Trials (total number of trials to process)
o Platform Server State – Block Queue / Float / Race

This grid-enabled SnB application run shows many of the problems that can be
encountered when submitting a job to the CCR-Grid. Since not all of the computational
resources are dedicated for grid computing, any time that a user wishes to run a grid-
enabled application, a request must be submitted through the batch queue. If the
production machines happen to be 100% utilized, the submitted request will be held in
the respective platform queue until sufficient production nodes are available.

Consider the run associated with Figure 2. Note that the user started the grid-enabled
SnB job before all of the computational resources were configured. The “IDLE” status at
the top of the Platform Servers Status area indicates that four of the platforms are not
currently processing any trials. The “OFFLINE” status associated with three of the
platforms is also on, indicating that the submitted request for production nodes on those
platforms has been queued. Conversely, the CROSBY platform (refer to the itemized list
of machines presented earlier in this section for a correlation between machine and
machine name) shows a “READY” status, which means that after the grid-enabled SnB
application run was initiated, the queued request for production nodes was submitted.

This situation is commonplace when dealing with multiple independent heterogeneous
platforms. That is, platforms that become available after an application run has already
started are configured and remain “IDLE” until a new application run is issued. The SnB
application, as shown in Figure 2, was instructed to run 50,000 trials starting from 1 to
50,000 with 9 Platform Servers and 319 nodes yielding 645 processes. From the

dynamically created web page, one can see that the application has been running for
43.55 minutes and processing trials at the rate of 260.76 trials per minute. In addition,
the estimated total completion time is 191.75 minutes with 148.20 minutes left in the run,
and the estimated speedup over aggregate sequential computing is 601.46.

Next, we consider the load balancing scheme used in our proof-of-concept analysis. The
scheme consists of three phases, namely, Block Queue, Float, and Race. These phases are
defined below.

• Block Queues
o Each Platform Server is given a block of trials to process from the Grid

Server based on a platform load factor determined from the time required
to process one trial. A Platform Server is completely responsible for
submitting the assigned trials to its registered Node Servers for processing.

o The Block Queues account for 85% of the total number of Shake-and-
Bake trials submitted for processing. The remaining 15% of the trials are
allocated to the Float queue.

• Float
o The Shake-and-Bake trials that have been reserved for Float are submitted

individually to any Platform Server that requests more trials to process
from the Grid Server.

o The distribution of Float trials to Platform Servers is determined at
runtime and is completely dynamic.

o Any Platform Server in the grid can process the Float trials after their
respective Block Queue has been completed.

• Race
o When a Platform Server requests more trials to processes from the Grid

Server and the Float trials have been exhausted, the Grid Server queries its
database of results and assigns trials that have been assigned, but not
completed, to the requesting Platform Server for processing. This
continues until solutions have been obtained and recorded in the Grid
Server database for all requested trials.

In terms of the Race Trials, the reader may note that there are a variety of situations under
which allocated trials were not completed, including, but not limited to, the following.

• A platform is still in the process of working on its Block Queue trials.
• Trial results were lost during transmission.
• The platform that processed a trial has gone offline or lost network connectivity

without transmitting trial results.

Thus, for whatever reason the trial result was not received, it will be resubmitted for
processing during the Race phase. Therefore, the SnB grid application is fault tolerant
with respect to assigning trials to multiple compute engines and will finish the requested
application job as long as one Platform Server with one Node Server remains active and
able to process trials.

The number of trials assigned to every Platform Serve r is determined by initially timing
one trial on every available compute engine. Specifically, all Node Servers that have
registered with a Platform Server are assigned identical SnB trials for processing by the
Grid Server. The time recorded includes processing and network latency. The Grid Server
automatically records the trial solution and timing information for each Node Server. The
platform speed (Tp) can now be calculated as the harmonic mean of the respective
platform’s Node Server solution times. Some variable definitions for the platform speed
and load factors follow.

• Pt is the total number of Platform Servers
• Nt is the total number of Node Servers
• Tp is the platform speed given in seconds
• Tpm is the mean platform speed given in seconds
• Tn is the node trial time given in seconds
• Pp is the number of platform processes

The platform speed is given by

Ptifor
TnNt

Tp
Nt

j j
i L1

11
1

1

=









=

−

=
∑ ,

where Tpi denotes the ith Platform Server speed. The Platform Servers mean is
calculated by

∑
=

=
Pt

i
iTp

Pt
Tpm

1

1
.

In order to take into consideration the number of platform processors, a Platform Load
Factor (PLF) is calculated as

Ptifor

Tpm

TpTpm
PpPp

Tpm
TpTpm

PpPp
PLF

Pt

j

j
jj

i
ii

i L1

1

=



















 −
+








 −
+

=

∑
=

,

where it should be noted that all PLF values range from 0 – 1 and the PLF’s sum to 1 as a
result of the above normalization, where the denominator denotes the “effective number
of processes” for all Grid Platform Servers. The PLF values are used to determine the
size of each of the Platform Servers Block Queues.

The bars located in the Platform Server Status columns, as shown in Figure 2, indicate
the percentage of the Block Queue that has been completed. For instance, the Grid Server

assigned JOPLIN 39586 trials for its Block Queue, beginning at trial number 1558 and
ending at trial number 41143. From the snapshot given in Figure 2, we see that JOPLIN
has thusfar completed 27% of its queue (10930 trials). The bars located in the Console
column indicate the percentage of the total job trials that have been completed. Figure 3
shows the state of the grid-enabled SnB application approximately two hours later. In this
case, the Float Trials allocated to JOPLIN were completely processed and JOPLIN is
now available to accept Race Trials. That is, JOPLIN is prepared to process trials that
have been assigned, but not completed, by other platforms. In Figure 3 note that the
JOPLIN status is “Race” and 97 % of the total SnB application trials have been
completed. The total parallel run time is 183.6 minutes with an estimated time to
completion of 4.27 minutes and an overall estimated speedup of 610.84.

We have chosen this grid-enabled SnB application run to illustrate the importance of
implementing robust forms of fault tolerance and load balancing. This is essential when
using a wide range of heterogeneous computational platforms. The current load-
balancing scheme produces a robust fault tolerant system that drives the grid platforms
toward 100% usage until the application job has been completed. Further research into
more adaptive schemes of load balancing is currently being investigated along with
incorporating methods derived from other researchers [34].

CCR Web Portal

The CCR-Grid uses a web portal, as shown in Figure 4, for single point of access to grid-
enabled resources. The web server is setup with the Redhat Linux 7.3 operating system
and Apache 1.3.26 HTTP server. The Apache server is an open-source HTTP server for
UNIX and Windows and it provides a secure, efficient, and extensible platform for the
grid web portal. The web portal is designed with Macromedia MX, Macromedia
Homesite, HTML, Java script and PHP scripting language software. The Java script is
used for client side form verification and user support functionality. PHP 4.2.3 is
configured with the Apache HTTP server for designing the web portal template pages
and the creation of dynamic web pages easily and quickly. Furthermore, the PHP code
does not have to be compiled as it is interpreted “on-the-fly” by the web server. This
results in web pages that can be highly customized for an authenticated user as they
browse the web portal for resources.

During the proof-of-concept grid-enabling of SnB, it was evident that a fine grained
authentication approach would be needed to manage several of the scientific applications.
For example, researchers developing the SnB application may indeed wish to have all
authenticated grid users be able to execute jobs and would like all documentation and
database information available. Conversely, other researchers may have proprietary
applications (data) that require the computational and data resources made available by
the grid, but would like to limit the job execution access to selected departments within
the University or possibly researchers located at remote locations. This can be
accomplished by creating grid user profiles that contain the users standard information
uid, name, organization, address, etc. and more specific information such as group id and

access level information, as shown in Figure 5. This information is stored in a database
and can be accessed through a PHP initiated query. MySQL 3.23.52 provides the speed
and reliability required for this task and it is currently being used as the web portal
database provider.

Since there is much more information required for a grid user to effectively use the web
portal, the software package PHPMyAdmin 2.3.2 is also installed on the web server. This
tool can manage an entire MySQL-server or just a single database from a web interface
and perform the following tasks quickly and easily:

• create and drop databases
• create, copy, drop and alter tables
• delete, edit and add fields
• execute any SQL-statement, even batch-queries
• manage keys on fields
• load text files into tables
• create and read dumps of tables
• export and import data to CSV values
• administer multiple servers and single databases
• check referential integrity
• create complex queries automatically connecting required tables
• create PDF graphics of your database layout

The Globus Toolkit 2.2 [18,25] was installed on the web server and its Monitoring and
Discovery Service (MDS) is used for monitoring the grid computational resources and
the web portal server. The MDS includes a Grid Resource Information Service (GRIS)
[18] that obtains platform information and Grid Index Information Service (GIIS) [18]
that aggregates the information for an entire grid. MDS provides the necessary tools to
build an LDAP-based information infrastructure for the computational grid and
OpenLDAP is used to host the grid resource information directory. The LDAP server
provides the following types of data:

• platform type and instruction set architecture
• operating system (host OS) name and version
• CPU information (type, number of CPUs, version, speed, cache, etc.)
• physical memory (size, free space, etc.)
• virtual memory (size, free space, etc.)
• network interface information (machine names and addresses)
• file system summary (size, free space, etc.)

The web portal GIIS aggregates the LDAP-based information of all the grid
computational resources and can be monitored remotely. The Softerra LDAP Browser 2.4
is used for remotely viewing this information as it provides a user- friendly interface. This
software is a lightweight version of Softerra LDAP Administrator and can be obtained as
freeware. The web portal dynamic PHP web pages can also query and display the LDAP-

based information for the grid users eliminating the need to use a secondary LDAP
browser interface.

There is currently a migration from Globus Toolkit 2.2 to Globus Toolkit 3.0 [18] for
projects that have a lifetime of more than one year and that do not have significant
dependence on existing grid infrastructure provided Globus Toolkit 2.2. Since this is the
case for the CCR-Grid, several additions will be made to the current web portal software
suite in order to incorporate the new Globus Toolkit. Globus Toolkit 3.0 is based on the
Open Grid Service Architecture (OGSA) [23] mechanisms, which address architectural
issues related to the requirements and interrelationships of Grid Services. A Grid Service
is a Web Service that conforms to a set of conventions for controlled, fault resilient and
secure management.

The Grid Service clients can be written in any language that has bindings to the Web
Services Description Language (WSDL) [24]. The Web Services Description Language
for Java Toolkit (WSDL4J) 1.0 allows the creation, representation, and manipulation of
WSDL documents describing services. The Hosting Environment that can provide the
core capabilities that allow clients to connect to services, service invocation, and resource
management is Apache/AXIS 1.1. Apache AXIS is an implementation of the SOAP
(“Simple Object Access Protocol”) submission to W3C (“World Wide Web
Consortium”). SOAP is a lightweight protocol for exchange of information in a
decentralized, distributed environment. It is an XML based protocol that consists of three
parts.

• SOAP is an envelope that defines a framework for describing what is in a
message and how to process it,

• a set of encoding rules for expressing instances of application-defined datatypes,
and

• a convention for representing remote procedure calls and responses.

An XML parser in Java called Xerces2 2.2.1 is needed for parsing and generating XML
documents for Apache AXIS and is also used during development of the web portal
extensively.

Apache Ant 1.5.1 is a Java-based build tool for developing software across multiple
platforms and J2EETM 1.4 are required for Open Grid Service Infrastructure (OGSI) [18]
which addresses detailed specifications of the interfaces that a service must implement.
J2EE bases them on standardized, modular components, by providing a complete set of
services to those components, and by handling many details of application behavior
automatically, without complex programming. The J2EE platform is the foundation
technology of the Sun ONE platform.

The web portal dynamic PHP web pages that extract information from the LDAP server
will now use a collection of classes and resources to process XML with PHP as the
Globus Toolkit 3.0 Index Service Data is available only in XML form. There is no need
for a separate GRIS as OGSA standard service data elements and FindServiceData

interfaces enable any Globus Toolkit 3.0 OGSA service to act as their own GRIS. The
Globus Toolkit 3.0 Index Service provides an information aggregation service that is
more extensible than the Globus Toolkit 2.2 GIIS, furthermore the Index service and the
GIIS are not compatible.

Note the web portal development integrates several software packages and toolkits in
order to produce a robust and sustainable system flexible enough to incorporate many
different scientific and engineering applications. Each grid-enabled application can be
used by all grid users and also use all of the available grid resources or be restricted to a
very well defined subset of grid users and resources. The ability to control these aspects
is very important as performance prediction and load balancing of grid-enabled scientific
applications on the grid can be very challenging, especially when wide ranges of
computational power and network latency exist.

CCR Data Grid Design

Early in 2002, the Center for Computational Research developed a Storage Area Network
(SAN) to meet critical ubiquitous storage and backup requirements in the Center. An
overview of this HP/Compaq/DEC SAN is shown in Figure 6. The system hardware
includes 24 TB of native disk storage, 24 HP Alpha servers running a Tru64 Sierra
Cluster, 170 TB native (340 TB compressed) tape storage over two 595 slot, and 8 drive
SDLT tape libraries. The system is designed to exceed 2.5GB/sec streaming I/O from a
Fibre Channel infrastructure capable of delivering 9.6GB/sec of I/O and 777.6GB/hour
native (1.555TB/hour compressed) of tape backup throughput. It is expected that this
system will be fully operational in 1H03.

Due to the extensive delay in acquiring and implementing this SAN, the data
infrastructure requirements for the CCR-Grid are presently being met by the following
alternative distributed resource specific solutions :

• a 48 GB General Parallel File System (GPFS) served by the IBM SP2
• a 1 TB Parallel Virtual File System (PVFS) served by a Dell Xeon Cluster
• a 0.5 TB Networked File System (NFS) served by a Dell Xeon 6600 Server
• a 16 TB Redhat Advanced Server file system served by a Dell Xeon Cluster
• a STOREDGE L400 with two 20 GB drives, 21 slots, 21 GB/hour native served

by a Solaris E250

Plans for designing and implementing a data grid infrastructure incorporating the new
SAN and the current Center hardware are currently underway.

CCR Grid Collaboration Expansion

Several interdisciplinary research projects have successfully used the grid as a tool in
order to take advantage of dynamic databases and a variety of compute platforms around
the world. In addition to supporting critical applications that can take advantage of a

grid, another major focus of the CCR-Grid project is to foster collaborations between
researchers at geographically distributed locations. Geographically distributed scientific
collaborations are supported by the Access Grid (http://www.accessgrid.org/agdp/) for
group-to-group interactions, as well as by a computational grid that will allow scientists
to work together in a tightly integrated fashion. Some of the current projects are
summarized below, where the geography is shown in Figure 7.

• UCLA, Prakashan Korambath, High Performance Computing Consultant,
Academic Technology Services

o CCR Grid and UCLA Sun Grid connectivity study investigation
§ network latency
§ data Migration Bandwidth
§ grid Load Balancing
§ grid Performance Monitoring
§ interoperability of Globus Toolkit and Sun Grid Engine
§ grid-enabling of scientific and engineering applications

• Hauptman-Woodward Medical Research Institute (HWI), Russ Miller Ph.D.,
Senior Research Scientist

o CCR Grid and HWI grid-enabling of Shake-and-Bake application [19-22]
§ automated grid application tuning
§ grid-based Data Mining
§ grid-based data warehousing
§ virtual collaboration
§ Genetic Algorithm optimization of grid-enabled SnB

• Johns Hopkins University (JHU), Roger Ghanem Ph.D., Director, Center for
Uncertainty Analysis and Management

o Optimal Structural System Design [33]
§ Risk Assessment
§ Risk Mitigation
§ grid-enabled computational models
§ data warehousing and migration

• University of Iowa (UIOWA), Keri C. Hornbuckle, Ph.D., Associate Professor,
Department of Civil and Environmental Engineering

o Fate and transport of persistent organic pollutants in nature systems
§ Lake Michigan Mass Balance [32]
§ Lake Michigan Mass Balance lake-wide analysis
§ Lake Michigan atmospheric PCB fate and transport [31,32]
§ grid-enabled atmospheric PCB congener analysis

Future Directions

In the 1980s, the National Science Foundation created the NSFnet that was intended to
give scientific researchers easy access to its new supercomputer centers. From this
modest beginning, smaller networks merged with NSFnet again and to form what is now
known as the Internet. Computational, group-to-group, and data grids are forming in a

very similar fashion and are poised to have the same explosion of connectivity. Grid
services are paving the way for a broad based organized e-commerce, educational,
scientific and data grid framework that can easily span the globe. Soon, the dependence
of hard-wired interconnected grid resources will even give way to wireless highly
available Grid Services that are accessed through dynamic web portals.

Acknowledgments

Support was provided by the Center for Computational Research at the University at
Buffalo and the National Science Foundation under award ACI-0204918.

Bibliography

[1] Louis H. Turcotte, “A Survey of Software Environments for Exploiting Networked
Computing Resources”, Engineering Research Center for Computational Field
Simulation, Mississippi State, MS, June 1993.

[2] A.Geist, A Beguelin, J. Dongarra, W. Jiang, R. Manchek, V. Sunderam, PVM –
Parallel Virtual Machine: A User’s Guide and Tutorial For Networked Parallel
Computing, MIT Press, Cambridge, MA,1998.

[3] Message Passing Interface Forum. MPI: A message-passing interface standard. Int. J.
Supercomput. Appl. And High Performance Comput., Special Issue on MPI 8, ¾ (1994).

[4] Message Passing Interface Forum 1996. MPI-2: Extensions to the Message-Passing
Interface, Technical Report, University of Tennessee, Knoxville, 1996.

[5] LAM / MPI Parallel Computing, 2002. http://www.lam-mpi.org

[6] Sun History of the Grid 2002. http://www.sun.co.nz/2002-0708/grid/history.html

[7] R. Butler and E. Lusk. Monitors, messages, and clusters: The p4 parallel
programming system. Technical Report Preprint MCS-P362-0493, Argonne National
Laboratory, Argonne, IL, 1993.

[8] The History of the Development of Parallel Computing, 1994.
http://ei.cs.vt.edu/~history/Parallel.html

[9] Nirav H. Kapadia and Jose A. B. Fortes, PUNCH: An architecture for Web-enabled
wide-area network-computing, Cluster Computing 2, 1999, pp. 153-164.
http://punch.purdue.edu/

[10] Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, Paul
F. Reynolds Jr. UVa CS Technical Report CS-94-20, June 8, 1994

[11] The Avaki Corporation, 2002. http://www.avaki.com/company/history.html

[12] Michael Litzkow, Miron Livny, and Matt Mutka, "Condor - A Hunter of Idle
Workstations", Proceedings of the 8th International Conference of Distributed
Computing Systems, pages 104-111, June, 1988. http://www.cs.wisc.edu/condor/

[13] Michael Litzkow, "Remote Unix - Turning Idle Workstations into Cycle Servers",
Proceedings of Usenix Summer Conference, pages 381-384, 1987.
http://www.cs.wisc.edu/condor/

[14] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke,
"Condor-G: A Computation Management Agent for Multi-Institutional Grids", Journal of
Cluster Computing volume 5, pages 237-246, 2002.
http://www.cs.wisc.edu/condor/condorg/

[15] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke,
"Condor-G: A Computation Management Agent for Multi-Institutional Grids",
Proceedings of the Tenth IEEE Symposium on High Performance Distributed Computing
(HPDC10) San Francisco, California, August 7-9, 2001.
http://www.cs.wisc.edu/condor/condorg/

[16] The Cactus Code, 2002. http://www/cactuscode.org/

[17] NPACI & SDSC Online, Volume 6, Issue 14, July 10, 2002.
http://www.npaci.edu/online/

[18] The Globus Project, 2002. http://www.globus.org/

[19] H.A. Hauptman, H. Xu, C.M. Weeks, and R. Miller, Exponential Shake-and-Bake:
theoretical basis and applications, Acta Crystallographica A55, 1999, pp. 891-900.

[20] C.M. Weeks and R. Miller, The design and implementation of SnB v2.0, Journal of
Applied Crystallography 32, 1999, pp. 120-124.

[21] C.M. Weeks and R. Miller, Optimizing Shake-and-Bake for proteins, Acta
Crystallographica D55, 1999, pp. 492-500.

[22] R. Miller, S.M. Gallo, H.G. Khalak, and C.M. Weeks, SnB: Crystal structure
determination via Shake-and-Bake, Journal of Applied Crystallography (1994), 27, pp.
613-621.

[23] I. Foster et al., “The Physiology of the Grid: An Open Grid Services Architecture for
Distributed Systems Integration,” tech. report, Glous Project;
http://www.globus.org/research/papers/ogsa.pdf (current June2002).

[24] E. Christensen et al., “Web Services Description Language (WSDL) 1.1,” W3C
Note, 15 Mar. 2001; http://www.w3.org/TR/wsdl (current June 2002).

[25] I. Foster and C. Kesselman, “Globus: A Toolkit-Based Grid Architecture,” The
Grid: Blueprint for a New Computing Infrastructure, I. Foster and C. Kesselman,
eds., Morgan Kaufmann, San Francisco, 1999, pp. 259-278.

[26] A.S. Grimshaw and W.A. Wulf, “The Legion Vision of a Worldwide Virtual
Computer,” Comm. ACM, vol. 40, no. 1, 1997, pp. 39-45.

[27] Open Portable Batch System, 2002. http://www.openpbs.org/

[28] Portable Batch System Professional, 2002.http://www.pbspro.com/

[29] IBM Loadleveler, 2002.
http://www-1.ibm.com/servers/eserver/pseries/library/sp_books/loadleveler.html

[30] Platform LSF 5, 2002. http://www.platform.com/products/wm/LSF/index.asp

[31] Miller, SM, Green, ML, DePinto, JV, Hornbuckle, KC. "Results from the Lake
Michigan Mass Balance study: Concentrations and fluxes of atmospheric polychlorinated
biphenyls and trans-nonachlor", Environ. Sci. Technol., 35, 2001, pp. 278-285.

[32] Green, ML, Depinto, JV, Sweet, C, Hornbuckle, KC. "Regional spatial and temporal
interpolation of atmospheric PCBs: Interpretation of Lake Michigan mass balance data",
Environ. Sci. Technol., 34, 2000, pp 1833-1841.

[33] Ghanem, R. and Sarkar, A., ``Mid-frequency structural dynamics with parameter
uncertainty,'' Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp.
5499-5513, 2002.

[34] Alt, M., Bischof, H. and Gorlatch, S., “Program development for computational
Grids using skeletons and performance prediction,” Parallel Processing Letters, Vol. 12,
No. 2 (2002) pp. 157-174

[35] Gunter Ahrendt Purchasing Consulting, 2002. http://www.gapcon.com/listg.html

[36] Gentzsch, Wolfgang, “Response to Ian Foster’s “What is the Grid?””, GRID Today,
Vol. 1, No. 8, August 5, 2002

[37] Global Grid Forum, 2002. http://www.gridforum.org/

[38] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S.
Meder, V. Nefedova, D. Quesnal, S. Tuecke. “Data Management and Transfer in High
Performance Computational Grid Environments”. Parallel Computing Journal, Vol. 28
(5), May 2002, pp. 749-771.

[39] W. Allcock, J. Bresnahan, I. Foster, L. Liming, J. Link, P. Plaszczac. “GridFTP
Update January 2002”. Technical Report, January 2002.

[40] W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, S. Tuecke.
“GridFTP Protocol Specification”. GGF GridFTP Working Group Document, September
2002.

[41] J. Bester, I. Foster, C. Kesselman, J. Tedesco, S. Tuecke. GASS: A Data Movement
and Access Service for Wide Area Computing Systems. Sixth Workshop on I/O in
Parallel and Distributed Systems, May 5, 1999.

[42] S. Vazhkudai, S. Tuecke, I. Foster. “Replica Selection in the Globus Data Grid”.
Proceedings of the First IEEE/ACM International Conference on Cluster Computing and
the Grid (CCGRID 2001), pp. 106-113, IEEE Computer Society Press, May 2001.

[43] D. Angulo, I. Foster, C. Liu, and L. Yang. “Design and Evaluation of a Resource
Selection Framework for Grid Applications”. Proceedings of IEEE International
Symposium on High Performance Distributed Computing (HPDC-11), Edinburgh,
Scotland, July 2002.

[44] K. Czajkowski, I. Foster, C. Kesselman, V. Sander, S. Tuecke; “SNAP: A Protocol
for Negotiating Service Level Agreements and Coordinating Resource Management in
Distributed Systems”. 8th Workshop on Job Scheduling Strategies for Parallel
Processing, Edinburgh, Scotland, July, 2002.

[45] K. Czajkowski, S. Fitzgerald, I. Foster, C. Kesselman. “Grid Information Services
for Distributed Resource Sharing”. Proceedings of the Tenth IEEE International
Symposium on High-Performance Distributed Computing (HPDC-10), IEEE Press,
August 2001.

[46] K. Keahey, V. Welch, “Fine-Grain Authorization for Resource Management in the
Grid Environment”. Proceedings of Grid2002 Workshop, 2002.

[47] L. Pearlman, V. Welch, I. Foster, C. Kesselman, S. Tuecke. “A Community
Authorization Service for Group Collaboration”. Proceedings of the IEEE 3rd
International Workshop on Policies for Distributed Systems and Networks, 2002.

[48] G. von Laszewski, I. Foster, J. Gawor, A. Schreiber, C. Pena. “InfoGram: A Grid
Service that Supports Both Information Queries and Job Execution”. Proceedings of the
11th IEEE International Symposium on High-Performance Distributed Computing
(HPDC-11), IEEE Press, Edinburg, Scotland, July 2002.

[49] I. Foster, N. Karonis. “A Grid-Enabled MPI: Message Passing in Heterogeneous
Distributed Computing Systems”. Proc. 1998 SC Conference, November, 1998.

[50] B. de Supinski, N. Karonis. “Accurately Measuring MPI Broadcasts in a
Computational Grid”. Proc. 8th IEEE Symp. on High Performance Distributed
Computing, pp. 29-37, August 1999.

[51] I. Foster, N. Karonis, C. Kesselman, G. Koenig, S. Tuecke. “A Secure
Communications Infrastructure for High-Performance Distributed Computing”. 6th IEEE
Symp. on High-Performance Distributed Computing, pp. 125-136, 1997.

Parallel Language Description
P4 P4 is a library of macros and subroutines developed at Argonne National

Laboratory for programming a variety of parallel machines. The p4 system supports
both the shared-memory model (based on monitors) and the distributed-memory
model (using message-passing) [1,7].

Express The Express system is a set of libraries for communication, I/O, and parallel
graphics. Extended I/O routines enable parallel input and output, and a similar set
of routines are provided for graphical displays from multiple concurrent processes.
The toolkit is developed and marketed commercially by ParaSoft Corporation [1].

LINDA LINDA is a concurrent programming model that has evolved from a Yale
University research project. The primary concept in Linda is that of a ``tuple-
space'', an abstraction via which cooperating processes communicate. This central
theme of Linda has been proposed as an alternative paradigm to the two traditional
methods of parallel processing: that based on shared memory, and that based on
message passing [1].

Table 1: Parallel Computing Languages.

Figure 1: Client/Server configuration types for grid-enabled Shake-and-Bake application.

Figure 2: Dynamic HTML front-end for grid-enabled Shake-and-Bake application.

Figure 3: Dynamic HTML front-end for grid-enabled Shake-and-Bake application load
balancing and fault tolerance.

Figure 4: University at Buffalo Center for Computational Research Grid Web Portal.

Figure 5: Grid portal CCR Grid database schema (Courtesy of Steven M. Gallo, Database
Administrator, Center for Computational Research).

Figure 6: Center for Computational Research Storage Area Network design and
integration with CCR Grid computational resources (Courtesy of Tony Kew, Storage
Area Network Administrator, Center for Computational Research).

Figure 7: Buffalo-CCR proposed collaborative computational and data grid.

