Multisearch Techniques: Parallel Data Structures
on Mesh-Connected Computers *

Mikhail J. Atallahf Frank Dehne?
Department of Computer Science School of Computer Science

Purdue University Carleton University
West Lafayette, IN 47907, USA. Ottawa, Canada K1S 5B6.

Russ Miller®
Department of Computer Science
State University of New York at Buffalo
Buffalo, NY 14260, USA.

Andrew Rau-Chaplin¥ Jyh-Jong Tsayl
School of Computer Science National Chung Cheng University
Carleton University Institute of Computer Science
Ottawa, Canada K1S 5B6. and Information Engineering

Chiayi, Taiwan 62107, ROC.

February 16, 1996

*A preliminary version of this work appeared in the Proceedings of the 1991 ACM
Symposium on Parallel Algorithms and Architectures (pp. 204-214).

'Research partially supported by the Office of Naval Research under Contracts N00014-
84-K-0502 and N00014-86-K-0689, the Air Force Office of Scientific Research under Grant
AFOSR-90-0107, the National Science Foundation under Grant DCR-8451393, and the
National Library of Medicine under Grant R01-LM05118.

{Research partially supported by the Natural Sciences and Engineering Research Coun-
cil of Canada.

SResearch partially supported by the National Science Foundation under Grant IRI-
8800514.

fResearch partially supported by the Natural Sciences and Engineering Research Coun-
cil of Canada.

IResearch partially supported by the Office of Naval Research under Contract N00014-
84-K-0502, the Air Force Office of the Scientific Research under Grant AFOSR-90-0107,
the National Science Foundation under Grant DCR-8451393, and the ROC National Sci-
ence Council under Contract NSC80-0408-E194-13.

M. J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J.-J. Tsay, "Multisearch techniques for
implementing data structures on a mesh-connected computer,” Journal of Parallel and Distributed
Computing, Vol. 20, 1994, pp. 1-13.

F D
M. J. Atallah, F. Dehne, R. Miller, A. Rau-Chaplin, and J.-J. Tsay, "Multisearch techniques for implementing data structures on a mesh-connected computer," Journal of Parallel and Distributed Computing, Vol. 20, 1994, pp. 1-13.

Abstract

The multisearch problem is defined as follows. Given a data struc-
ture D modeled as a graph with n constant-degree nodes, perform O(n)
searches on D. Let r be the length of the longest search path associ-
ated with a search process, and assume that the paths are determined
“on-line”. That is, the search paths may overlap arbitrarily.

In this paper, we solve the multisearch problem for certain classes of

graphs in O(ﬁ%—r%) time on a y/n X /n mesh-connected computer.
For many data structures, the search path traversed when answering
one search query has length r = O(logn). For these cases, our algo-
rithm processes O(n) such queries in asymptotically optimal ©(y/n)
time. The classes of graphs we consider contain many of the impor-
tant data structures that arise in practice, ranging from simple trees
to Kirkpatrick hierarchical search DAGs.

Multisearch is a useful abstraction that can be used to implement
parallel versions of standard sequential data structures on a mesh.
As example applications, we consider a variety of parallel online tree
traversals, as well as hierarchical representations of polyhedra and its
myriad of applications (lines-polyhedron intersection queries, multiple
tangent plane determination, intersecting convex polyhedra, and three-
dimensional convex hull).

1 Introduction

Let D be a data structure modeled as a graph G with n constant-degree
nodes. The multisearch problem consists of performing O(n) searches on
D, where the searches need not be processed in any particular order. Fur-
ther, the searches may be simultaneously processed in parallel by using, for
example, one processor per search. However, the path that an individual
search will trace in G is not known ahead of time, and must instead be de-
termined “on-line”. That is, only when a search query is at node » of G can
it determine which node of G it should visit next. (This is accomplished by
comparing the search key to the information stored at ». It should be noted
that the nature of the information stored at the nodes, as well as the nature
of the comparison that is performed at every node, depends on the specific
problem being solved.) It is important to note that the paths of the search
queries can overlap arbitrarily. That is, at any time, any node of G may be
visited by an arbitrary number of search queries.

Multisearch is a useful abstraction that can be used to implement parallel
versions of standard sequential data structures on a mesh. The Multisearch
problem is a challenging problem both for EREW-PRAMs and for networks
of processors. This is due to the fact that many search queries might want
to visit a single node of G, creating a “congestion” problem. In fact, this
problem of congestion can be complicated by the fact that we cannot even
tally ahead of time the amount of congestion that will occur at a node, since
we do not know ahead of time the full paths of the search queries, only
the nodes of G at which the queries start. On the PRAM, the graph G is
stored in the shared memory in the standard way. When the parallel model
used to solve the problem is a network of processors, the graph G is initially
stored in the network such that each processor contains one node of G, as
well as that node’s adjacency list. It is important to keep in mind that the
computational network’s topology is not the same as the search structure G,
so that a neighbor of node » in G need not be stored in a processor adjacent
to the one containing v. ! Initially, the O(n) search queries are arbitrarily
distributed one per processor.

In the EREW-PRAM, the difficulty of providing an efficient solution
to the multisearch problem comes from the “exclusive read” restriction of
the model. A very elegant way around this restriction was given by Paul,

!Note that due to the congestion problem, even an efficient embedding of the graph G
into the network will not lead to an efficient multisearch algorithm.

Vishkin and Wagener [26] for the case where G is a 2-3 tree. However,
it should be noted that they assume a linear ordering on the search keys.
We cannot afford to make this assumption since we consider applications
involving multidimensional search keys for which no linear ordering can be
used.

The multisearch problem appears to be even more challenging for net-
works of processors than it is for the EREW-PRAM, due to the fact that
the data structure is distributed over a network. Furthermore, similar to the
EREW-PRAM, each memory location can be accessed only by a constant
number of search queries at a time since a processor containing, say, node v’s
information would be unable to simultaneously store more than a constant
number of search queries.

The main contribution of this paper is in solving the multisearch prob-
lem for certain classes of graphs in O(\/n + 7 ﬁ) time on a /n X /n

logn
mesh-connected computer, where r is the length of the longest search path

associated with a query. Note that for many data structures the search path
traversed when answering a query has length » = O(logn). For this situa-
tion, our algorithm processes O(n) search queries in asymptotically optimal
O(y/n) time.

The classes of graphs considered include many important data structures
that arise in practice, ranging from simple trees to the powerful Kirkpatrick
hierarchical search DAGs that are so important to solving problems in com-
putational geometry. We will show how to exploit our multisearch algorithm
to efficiently implement parallel online tree traversals as well as to traverse
hierarchical representations of polyhedra. The latter yield solutions to prob-
lems including lines-polyhedron intersection queries, multiple tangent plane
determination, three-dimensional convex hull?, and intersection of convex
polyhedra. Notice that these problems are of considerable importance in
robotics, solid modeling, computational geometry, vision, and pattern recog-
nition, to name a few.

We believe that the multisearch problem is such a fundamental problem
that we expect it to have additional applications (e.g., in parallel databases
and related areas).

The multisearch problem for hypercube multiprocessors was studied in [8].
The hypercube technique presented in [8] was based on the idea of moving

2The 3-D convex hull problem has optimal mesh solutions recently obtained [20, 16]
independently of ours and using very different, purely geometric approaches, rather than
the multisearch method we use.

the search queries synchronously through G, and required time proportional
to the diameter of the network to move all queries to the next nodes’ in their
search paths. Unfortunately, such an approach is not viable on the mesh,
since in order to obtain an optimal mesh algorithm to solve the multisearch
problem, the time per advancement of all queries by one step needs to be
O(%), which is less than the diameter of the network. The techniques we
use to solve the multisearch problem for the mesh are very different from
those used in [8], and they are also very different from those used in [26].

In very broad terms, our techniques for solving the multisearch problem
are a judicious combination of the following ideas.

e Partition G into pieces, some of which are processed sequentially, while
others are processed in parallel.

e Create multiple copies of those pieces of G for which too many searches
need access, and distribute the copies to disjoint submeshes, each of
which is responsible for advancing a manageable subset of the “con-
gested” searches. It should be noted that the straightforward strategy
of making multiple copies of G, and using one copy for each search,
does not work. This is due to the fact that it would not only take too
much time to create the O(n) copies, but there is not enough space to
store all of these copies of G. In fact, there is only enough space to
store ©(1) copies of G, since G has n nodes.

e Map some pieces of G into suitably shaped portions of the mesh, which
are not necessarily rectangular submeshes.

Of course, the parameters needed to efficiently perform these partition-
ing, duplication, and mapping strategies cannot be pre-computed, since the
full search paths are computed on-line. Therefore, these parameters must
also be determined on-line, as the searches advance through G. The above
description is necessarily an over simplification, and only a careful look at
the details can reveal the exact interplay between the above ideas, as well
as the exact nature of each.

The classes of graphs considered in this paper include hierarchical di-
rected acyclic graphs (i.e., hierarchical DAGs) and partitionable graphs,
which contain many important data structures that arise in practice.

Hierarchical DAGSs consist of a vertex set that can be partitioned into
h = O(logn) levels, Lg,..., Ly, such that every edge is from some L; to

Liy1, |Lo| = 1, and cyp* < |L;| < egpt, for some p > 1 and positive con-
stants ¢; and ¢;. An important member of this class of graphs is the Kirk-
patrick subdivision hierarchies [19]. Once an optimal mesh implementation
of multisearch for these graphs is obtained, new optimal mesh algorithms
for numerous geometric problems follow immediately.

Partitionable graphs will be defined in detail later, but it should be noted
that an important member of this class of graphs is the balanced k-ary
tree. For partitionable graphs, we consider the multisearch problem for both
the undirected and the directed case. For tree data structures, the directed
partitionable graphs model tree algorithms for which search queries move
along tree edges only in one direction, either from the root towards the
leaves, or from the leaves towards the root. Many standard tree searches
are of this type. Undirected partitionable graphs model tree algorithms for
which search queries are permitted to move within the tree in an arbitrary
manner. Such cases arise when queries are traversing parts of a tree, for
example, in inorder. Note that other instances of the multisearch problem
for search trees have been further studied in [31].

The next section contains a more formal definition of the multisearch
problem, and of the various terms used in the paper. Sections 3.1 and 3.2
contain the main results: our solutions to the multisearch problem for each
of the above-mentioned classes of graphs. Section 4 illustrates the use of
multisearch to solve various problems efficiently on the mesh.

2 Definitions

In this section we will define the model of computation, the multisearch
problem, and the classes of graphs for which we will present efficient multi-
search algorithms in Section 3.

2.1 The Mesh-Connected Computer

The mesh-connected computer (mesh) of size n is a SIMD machine with n
simple processors arranged in a square lattice. To simplify the exposition,
it is assumed that n = 4°, for some integer ¢. For all 4,5 €]0,... a2 - 1],
let P; ; represent the processor in row ¢ and column j. Processor P; ; is con-
nected via bidirectional unit-time communication links to its four neighbors,
Pi_y;, Pit1j, Pij—1, and P; 41, assuming they exist. Each processor has a
fixed number of ©(logn) bit words of memory (registers), and can perform

standard arithmetic and Boolean operations on the contents of these regis-
ters in unit time. Each processor can also send or receive a word of data to
or from one of its neighbors in unit time.

The communication diameter of a mesh of size n is ©(y/n), as can be
seen by examining the distance between processors in opposite corners of
the mesh. This means that if a processor in one corner of the mesh needs
data from a processor in another corner of the mesh at some time during
an algorithm, then a lower bound on the running time of the algorithm is
Q(y/n). It is easy to see that, because of the communication diameter, the
problems in this paper have time complexities Q(/n).

In this paper, we will frequently use ©(y/n) time standard mesh opera-
tions such as sorting, random access read, random access write, compression,
parallel prefix, and list ranking [4, 23, 24, 25, 29].

2.2 The Multisearch Problem

Let G = (V, E) be a directed or undirected graph of size n = |V|+|E|, where
the out-degree or degree, respectively, of any vertex is bounded by some
constant. Let U be a universe of possible search queries on G. Define the
search path of a query ¢ € U, denoted path(q), to be a sequence of h vertices
(v1,...,v3) of G defined by a successor function f : (V Ustart) x U — V as

o f(start,q) = vy, and
o f(vi,q)=viq1fori=1,...,h—1
The function f has the following properties.

o If G is directed, then for every vertex » € V and query ¢ € U,
(v, f(v.q)) € E.

e If G is undirected, then for every vertex v € V and query q € U,
{v,f(v.q)} € E.

e f(v,q) can be computed in ©(1) time by a single processor that con-
tains the information pertinent to ¢ and v.

We say that a query ¢ € U wisits a node v € V at time ¢ if and only
if, at time ¢, the mesh is in a state where there exists a processor which
contains a description of both the query ¢ and the node v. (Note that this
definition implies that many queries can simultaneously visit node v, if each
such query uses a different copy of »’s information.) The search process for

a search query g with search path path(q) = (v1,...,v1) is a process divided
into h time steps, t; < t2 < ... < t, such that at time ¢;, 1 < 2 < h, query
q visits node v;. We will refer to the change of state between ¢; and #;41,
1 <2 < h, as advancing query q one step in its search path. It is important
to note that we do not assume the search path to be given in advance. In
fact, we assume that the search path for each query is constructed online
during the search by successive applications of the function f.

Note that for a directed graph, a query can be advanced along an edge
only in the indicated direction, whereas for undirected graphs a query can
advance along an edge in both directions.

Given a set @ = {q1,...,¢n} C U of m search queries, where m = O(n),
then the multisearch problem for Q on G consists of executing (in parallel) all
m search processes induced by the m search queries. It is important to note
that the m search processes can overlap arbitrarily. That is, at any time ¢,
any node of G may be visited by an arbitrary number of queries, which may,
in fact, be at very different time steps in their respective search paths (of
course each such query would be using a different copy of v’s information).

We will refer to the process of advancing, in parallel, a subset of the m
search queries by one step in their respective search paths as a multistep.
Notice that we do not require all queries to be advanced synchronously. We
will refer to a sequence of multisteps which has the property that every
search query is advanced Q(logn) steps in its respective search path, as a
log-phase.

A convenient way of visualizing the multisearch process is by associating
a pebble with each query. Initially, the pebble associated with query ¢ is
placed on the first node in path(q). During the multisearch process, the
m pebbles move in parallel along edges of G, each pebble according to its
respective search path. Each node of the graph may be visited, at any time,
by an arbitrary number of pebbles. Notice that if G is undirected, then
pebbles move freely along edges of the graph, while if G is directed, then
pebbles can only move in the proper direction of an edge. Note that, pebbles
may move with different and possibly changing speeds.

For the remainder of this paper, we will assume that G is connected
(by a “connected” directed graph we mean that the undirected version of
that graph is connected). For graphs with several connected components,
the multisearch algorithms described in Sections 3.1 and 3.2 can be easily
applied independently and in parallel to each connected component, such
that the overall time complexity remains unchanged.

2.3 Hierarchical DAGs

Let G = (V, E) be a directed acyclic graph with vertex set V', edge set E,
and size n = |V| + |E|, where the out-degree of any vertex is bounded by
some constant. The graph G is called a hierarchical DAG of size n and
height h if and only if V' can be partitioned into h + 1 subsets Lg,..., Ly
such that

1. h = O(logn),
2. |Lo| =1,

3. There exists a constant g > 1 such that, for all ¢ € {0,...,h — 1},
| Liya| = plLil.

4. for every directed edge (v, w) € E, there exists an ¢ € {0,...,h — 1}
such that v € L; and w € L;44.

See Figure 1 for an illustration. The subsets Ly, ..., Ly are called the levels
of G. For a node v € L;, the index 7 is called the level index of v. Notice
that Requirement 3 implies that |L;| = p'. This requirement is introduced
to simplify the exposition of our algorithm in Section 3.1. However, our
algorithms can be easily adapted to the case ¢;p' < |L;| < eop', for some
positive constants ¢; and c¢y. It should be noted that subdivision hierarchies,
as described in [19], are hierarchical DAGs.

2.4 Partitionable Graphs
2.4.1 6-Splitters

Let G = (V, E) be a (directed or undirected) graph with vertex set V', edge
set F, and size n = |[V| + |E|. Let S C E. Then (V,E — S) is a graph with
vertex set V and edge set E — S that consists of a set of & < n connected
components, denoted {Gy, ..., Gy}

We define S to be a §-splitter of G, 0 < ¢§ < 1, if and only if |G;| =
|Vi| + |Ei| = O(n%), for all 1 <4 < k. Given a §-splitter S, we will refer to
G(S)={G1,...,G} as a §-splitting of G.

A vertex v € V is defined to be at the border of a é-splitter S if and only
if v is a vertex of an edge e € S. A ¢-splitting G(S) = {G1,..., G} is called
normalized, if k = O(n'~%).

2.4.2 «-Partitionable (Directed) Graphs

Let G = (V,E) be a directed graph with vertex set V', edge set E, and
size n = |V|+ | E|, where the out-degree of any vertex is bounded by some
constant. Let distg(v1,v2) denote the length of a shortest directed path in
G connecting vertices v; and vy. We define G to be a-partitionable if and
only if G has an a-splitter S, 0 < a < 1, such that G(S) = {G1,...,Gi}
can be partitioned into two sets of graphs, {Hy,..., Hy, } and {T%,..., Tk, },
such that for every directed edge (v1,v2) € S, v1 € H; and vy € T}, for some
1,7.

Note that, for example, every balanced k-ary search tree with all edges
either directed towards the leaves or directed towards the root (i.e., all search
queries can only move in one direction, either from the root towards the
leaves, or from the leaves towards the root) is a-partitionable; see Figure 2.

2.4.3 «a-(-Partitionable (Undirected) Graphs

Let G = (V, E) be an undirected graph with vertex set V', edge set E, and
size n = |V| 4 |E|, where the degree of any vertex is bounded by some
constant. For two vertices v1,vy € V', let distg(v1,v2) denote the length of
a shortest (undirected) path in G connecting v, and vs.

Let 51 and Sy be an a-splitter and a §-splitter, respectively, of G. We
define S7 and Sy to have distance k if and only if & = min{distg(v1,v2) : v1
is at the border of Sy and vy is at the border of Ss}.

G is called a-fg-partitionable if and only if G has an a-splitter S; and a
G-splitter Sy, such that S; and Sy have distance Q(logn).

Note that, for example, every undirected balanced k-ary search tree
(i.e., search queries can move within the tree in arbitrary direction) is a-g-
partitionable; see Figure 3.

3 Mesh Solutions to the Multisearch Problem

In this section, we present mesh solutions to the multisearch problem for
hierarchical DAGs, a-partitionable graphs, and a-g-partitionable graphs.
First, we define some notation that will be used throughout this section.
Define G = (V, E) to be a graph with vertex set V', edge set E, and size
n = |V| + |E|. In each subsection, we will specify whether the graph is
directed or undirected. For directed graphs, we assume that the out-degree
of every vertex is bounded by some constant, and for undirected graphs,

10

we assumme that the degree of every vertex is bounded by some constant.
Finally, we define @ = {q1, ..., ¢} to be a set of m = O(n) search queries.

We now discuss the manner in which G and @ will be represented on the
mesh. Every processor will initially store

e one arbitrary vertex v € V,

o the addresses of all processors storing a vertex w € V, such that
(v,w) € E (recall that G has out-degree ©(1)), and

e one arbitrary query q € Q.

During an algorithm, no processor will store information associated with
more than O(1) items of V' nor more than ©(1) items of @. Notice that
the assignment of vertices and queries to processors may change during the
course of the algorithms. In addition, we assume that every processor p has
a register visit(p), where at any stage of a multisearch algorithm, a query
q € Q will be said to wvisit a node v € V if processor p is responsible for
query g and stores a copy of v in visit(p).

3.1 The Multisearch Problem for Hierarchical DAGs

Let G = (V, E) be a hierarchical DAG of size n and height h. Let Lo,..., Ly
be the levels of G. Recall that this implies G has out-degree O(1), h =
O(logn), and |L;| = u*, for some p > 1.

Consider a set @ = {q,...,¢,} of n search queries. Due to the structure
of the hierarchical DAG, a search path for a query ¢ has length »r < h 4+ 1
and consists of r vertices in consecutive levels L;,..., L;y,_1, for some ¢ €
{0,....,h — 7+ 1}. We will henceforth assume, w.l.o.g., that each query has
a search path of length A 4 1.

In this section we show how to solve the multisearch problem for G
and @ on a mesh-connected computer of size n in time O(y/n). The initial
configuration of the machine is as given at the beginning of Section 3. In
addition, we assume that every processor storing a node v also stores the
level index of v in G. Note that the level indices can be easily computed in
time ©(,/n) by successively identifying the vertices in each level L;, starting
with level Lj, and compressing after each step the remaining levels into a
subsquare of processors.

For ¢ > 1, we will use log(i) to denote the function obtained by applying

the log function 2 times, i.e., log(l) r = logx and log(i) r = loglog(l_l) x.

For convenience, we define log(o) r = 5. Note that there exists a constant

11

¢ such that p¥ > y? for any v > ¢. For any z > u°, we define logy z =

max{i|10g£f) z > c}. Hence, logff) r > (logff‘i'l) z)? for 0 < i < logl z — 1.

For the remainder of this section, all logarithms are taken to be the base p.

Let B; = (V;, E;), 0 < % < log"h — 1, be the subgraph of G induced
by the vertices of G between levels h — 210g(i) h and h — 1 — 210g(i+1) h,
inclusive. We will use |B;|, h; = h — 1 — 21ogtV h, and Ah;, to refer
to the size of B;, the highest index of a level in B;, and the number of
levels in B;, respectively. See Figure 4 for an illustration. Notice that
|B;| = @(ph-21es" "y = O(gtz) and Ak = ©(log! h).

Let B* be the subgraph induced by the vertices between levels h —
210g(log* h=1) 1, and h, inclusive. Notice that B* consists of ©(1) levels.

The general strategy for solving the multisearch problem on G is to solve
the multisearch problem for By, then for By, and so on, until we solve the
problem for Bj,»;_;, and finally for B*. That is, we first consider those
queries which originate in Bg, and process them until they either terminate
or wish to leave By. Next, we process those queries that wanted to leave
By (for By), as well as those queries which originate in B, and process
them until either they terminate or wish to leave By (for By). This process
continues until all queries terminate that need to be processed by B*.

Since B* has O(1) levels, the multisearch problem for B* can be easily
solved in time O(y/n). What remains to be shown is how to solve the
multisearch problems for By, ..., Biog*,—1 in total time O(y/n).

Consider the partitioning of the entire mesh-connected computer into

log(i) h X log(i) h submeshes of lo\{gh X lo\{gh processors. Such a partition-
ing will be called a B; -partitionigng, and egach submesh will be called a B;-
submesh. Notice that each B;-submesh can store a copy of the subgraph B,.
Further, notice that every B;,1-submesh, A, contains several B;-submeshes.

We will refer to the top-left B;-submesh as the top-left B;-submesh of A.

Lemma 1 Consider a B;-partitioning of the mesh-connected computer, 0 <

1 <log"h—1, and assume that every B;-submesh stores a copy of B;. Then
the multisearch problem for B; can be solved in time O(y/|B;|log Ah;) =

O(y/[Bi[log") 1).

Proof: Let B! be the subgraph of G induced by the vertices of G between
levels h; — Ah; and h; — 1 — 2log AhL;, inclusive, and let BZ»2 be the subgraph

induced by the vertices between levels h; — 2log Ah; and h;, inclusive. See

Figure 5 for an illustration. Notice that |B}| = O(phi—21e8 &) = O(%).

12

On every B;-submesh in parallel, we will solve the multisearch problem for
B; for those queries stored in that submesh. We next describe our solution
for one B;-submesh. The solution consists of two phases. In Phase 1, every
query visits the vertices on its search path that lie in B!; in Phase 2 the
queries will visit the vertices on their search path that lie in B?. For Phase 1,

the B;-submesh is partitioned into Ah; X Ah; submeshes of size %, called

Bl-submeshes. Notice that every Bl-submesh can store a copy of Bl. In
time O(+/]B;[), we can identify B} from B; and duplicate B} such that every
B!-submesh contains a copy of B!. Each B!-submesh then (independently
and in parallel) solves the multisearch problem for B} for those queries stored
in that submesh. This can be easily done in O(+/]B;[) time since |B}| =

ol (A|]ii|)2) and B} consists of O(Ah;) levels. For Phase 2, the search process
is advanced level by level. Since B? consists of O(log Ah;) levels, Phase 2
can be executed in O(+/]B;[log Ah;) time. Thus, the time complexity of the
above process is O(y/|B;[log Ah;). O

Obviously, if every B;-submesh stores a copy of B; then we need O(log™ n)
memory per processor. Our strategy will be to distribute the subgraphs B,
over the mesh in such a way that, when the multisearch problem for B;
needs to be solved, all of the required copies of B; can be created in time
O(+/|Bit1]). From this, we obtain a O(y/n) time solution to the multisearch
problem for G.

To simplify the presentation, we assume log(i) h is divisible by log(H'l) h,
for 0 <7 <log™h — 1. Our algorithm can easily be modified to handle the
general case. Let Bj,g+ 1, -submesh denote the entire mesh.

Algorithm 1: An algorithm for solving the multisearch problem for a hi-
erarchical DAG G.

1. A register label(p) is allocated at every processor p, and the following
is executed for ¢ = log*h —1,...,0:

e In each B, i-submesh, A, every processor p in the top-left B;-
submesh of A sets label(p) := .

Notice that the label of a processor may be overwritten by smaller
indices in later iterations.

2. For i =log"h —1,...,0, on each B;;i-submesh the following is exe-
cuted independently and in parallel:

13

(a) The subgraph B; is identified and its data is distributed evenly
among the processors with label = 1.

(1) . .
(b) (1;;<gi+l>hh)2 copies of the union of By, ..., B;_; are created and

one copy is moved to each B;-submesh.

Note that, after this step, each B(;yq)-submesh stores a copy of B;
using the processors with label = 1.

3. Fori =0,...,log" h — 1, on each B;;i-submesh the following is exe-
cuted independently and in parallel:

(a) B; is duplicated such that each B;-submesh stores a copy of B;.

(b) For each B;-submesh, the multisearch problem for B; with respect
to those queries stored in that submesh is solved as indicated by
Lemma 1.

4. Finally, the multisearch problem for B* is solved.

Theorem 2 Let G be a hierarchical DAG of size n and let Q@ = {q1,..., ¢}
be a set of m = O(n) search queries. Then the multisearch problem for Q
on G can be solved on a mesh of size n (with ©(1) memory per processor)

in O(y/n) time.

Proof: We first study the correctness of Algorithm 1, and then give some
implementation details and prove the claimed time complexity and space
requirement. In Steps 1 and 2, each B;, for 0 < i <log™h — 1, is duplicated
such that every B, i-submesh contains one copy of B;. In Step 3, the
multisearch problem is solved sequentially for Bg, By, ..., Big* 1. Notice
that within every B;;q-submesh, 0 < i < log™h — 1, the graph B, is copied
into every B;-submesh, such that Lemma 1 can be applied to solve the
multisearch problem for B;. Finally, in Step 4, the multisearch problem for
B* is solved. Thus, the multisearch problem for G is solved.

Next, we analyze the space complexity of Algorithm 1, showing that
only ©(1) space is required per processor. This is obvious for Steps 1, 3
and 4; a potential problem lies in the duplication scheme in Step 2. For
Step 2(b) we observe that E;;%) |B;| = O(|B;|) and, hence, it requires only
O(1) storage per processor. For Step 2(a), we need to show that in each
B;-submesh there are (|B;|) processors with label = ¢. Note that for
j <14 —1, each B ;-submesh contains one B;-submesh in its top-left cor-
ner whose processors’ labels are set to j (see Step 1). That is, in Step 1,

14

n logldt1) p
the labels of at most T h)2(T

7. Hence, the number of processors in each B;-submesh with label = 7 is

. 1

Ut (1 = TTHETE)) = Q). Sinee |Bi| = OG-
these processors can store B; with (1) storage per processor provided that
the B;’s data can be evenly distributed among them. This can be achieved in
O(+y/n) time, using a combination of the standard mesh operations. Summa-
rizing, we have shown that Algorithm 1 requires ©(1) storage per processor.

Next, we prove the time complexity of Algorithm 1. Since Ei»ozgg h=t VIBi] =
O(y/n) and O(X1%8, "1 \/[Bi11]) = O(/n), the time complexity of Steps 1
and 2 is ©(y/n). Since B* consists of ©(1) levels, the ©(/n) time complexity
of Step 4 is obvious. Since each B;,q-submesh contains one copy of B;, the
total time complexity for Step 3a (over all iterations) is O(Eﬁgg "= /1Bisi]) =
O(y/n). From Lemma 1 it follows that for each ¢ = 0,...,log* h—1, the time
complexity of Step 3b is O(v/|B;|log Ah;). Thus, the total time for all itera-

tions of Step 3b is O(Eﬁgg "1 /[Billog Ah;) = O(Eﬁgg h=l \/ﬁlii(gi(t)l)hh) =

O(y/n). Hence, the time complexity of Algorithm 1 is ©(y/n). O

)? processors are changed from 7 to

3.2 The Multisearch Problem For Partitionable Graphs

In this section, we present mesh solutions to the multisearch problem for
a-partitionable graphs and a-f-partitionable graphs. We will first intro-
duce a tool referred to as constrained multisearch, which will be utilized in
Sections 3.2.2 and 3.2.3.

3.2.1 Constrained Multisearch

Let G = (V,E) be a directed or undirected graph. Consider a set ¥ =
{G1,...,Gy} of k edge and vertex disjoint subgraphs of G such that |G;| =
O(n?) and k = O(n'~%), for some 0 < § < 1. It is important to note that
we do not assume that the union of the subgraphs in ¥ contains all vertices
of G.

Consider any stage of the multisearch for @ on G, and let v(q) € path(q)
denote the node currently visited by query g € Q.

The constrained multisearch problem with respect to ¥ consists of ad-
vancing, for every G; € ¥, every search query ¢ with v(q) € G; by log,n
steps in its search path, unless the next node to be visited by ¢ is not in G;.
Notice that the queries may be advanced by a nonuniform number of steps.

15

The remainder of this section focuses on procedure Constrained-Multisearch(¥,
¢), which solves the constrained multisearch problem on a mesh of size n in

O(y/n) time.
For every G; = (V;, E;) € ¥, we define

{ge Q :v(g) € V;}w _

nd

ri(G) = |

Property 1

Proof: A trivial consequence of the fact that |Q| = m = O(n). O
We now present our mesh algorithm for solving the constrained multi-
search problem with respect to V.

Procedure Constrained-Multisearch(¥, ¢): Implementation of con-
strained multisearch with respect to V.

Initial configuration: A stage of the multisearch for @) on G, where every
g € @ currently visits node v(q) € path(q). Furthermore, every processor
storing a vertex v € V, also stores an index indicating to which G; € ¥ the
vertex v belongs, if any.

Implementation:

1. All queries ¢ € @, such that v(q) is in some subgraph G; € ¥, are
marked active; all other queries are marked inactive. (Queries whose
search paths have already terminated are also marked inactive.)

2. For every G; € ¥, the value of T'y,(G;) is computed.

3. If
d TG =0
G, e
then EXIT.

4. For each G; € ¥, I‘%(Gi) copies of G; are created. Each copy is placed

in a vVné x vVnl size subsquare of the mesh-connected computer. That
is, a submesh of size Vné x Vn?.

16

5. Every active query ¢ € @, with v(¢) € G;, is moved to one of the
submeshes storing a copy of G;. This movement is coordinated so
that each submesh containing a copy of G; will receive O(n’) queries.

6. Within every submesh storing a subgraph G; € ¥, the following is
executed log, n times.

(a) For every active query ¢ € @, the next node in its search path is
determined (by applying the successor function f).

(b) Every active query for which the next node in its search path
is not in G;, is marked inactive. (A query whose search path
terminates is also marked inactive.)

(¢) Every active query visits the next node in its search path.

7. Discard the copies of the subgraphs G; € ¥ created in Step 4.

Lemma 3 The constrained multisearch problem with respect to ¥ can be
solved on a mesh of size n in ©(\/n) time.

Proof: We first study the correctness of Constrained-Multisearch(7,
), then give some implementation details, and finally prove the time com-
plexity. Obviously, every query ¢ either

e visits the next log, » nodes in its search path,

e visits the next N nodes in its search path, where N < log, n, until the
next node to be visited is no longer in the same subgraph G; € ¥ that
contains v(q), or

e does not advance any steps in its search path, for the case where v(q)
is not in any G; € V.

The crucial step for proving the correctness of the procedure is to show that
(1) the total size of the copies of subgraphs G; created in Step 4 is O(n),
and (2) in Step 5, the sizes and total number of queries to be moved match
the sizes and total number of submeshes available. Item (1) follows from
Property 1, and Item (2) follows from the definition of T'%(G;) and the fact
that each submesh is of size O(n?).

We will now prove the claimed time complexity. Steps 1, 2, 3, and 7
can be easily implemented in time O(y/n) by applying a constant number
of standard mesh operations. For Step 4, the mesh is subdivided into a

17

grid of vVnl=?% x v/n1=¢ submeshes, each of size n°. The total number of
copies created of every subgraph G; is O(n'~%) (Property 1). Hence, every
submesh needs to simulate only a constant number of “virtual” submeshes,
where each “virtual” submesh stores just one copy of some subgraph G; € 1.
Creating the required copies of subgraphs and moving them to the “virtual”
submeshes can be implemented by a constant number of standard mesh
operations. Step 5 is implemented analogously. Finally, we discuss the
time complexity of Step 6. Notice that each execution of the loop body
is executed independently and in parallel on every submesh of size O(né)
created in Step 4. Therefore, by using standard random access read and
write operations within every submesh, each iteration of the loop can be
implemented in O(v/nf) time, which implies a total of O(lognv/n®) time for
Step 6 (since there are log, n iterations). Since 0 < § < 1, the total time
complexity of Step 6 is O(lognvnd) = O(y/n). O

3.2.2 The Multisearch Problem for Directed a-Partitionable Graphs

Let G = (V, E) be a directed a-partionable graph. Let Q = {q1,...,¢n} be
a set of m = O(n) search queries, and let 7 denote the length of the longest
search path associated with a query ¢ € @. In this section, we present an
algorithm to solve the multisearch problem for @ on G in O(y/n + rk\)/gﬁn)
time. Our strategy is to give an algorithm which executes one log-phase
of multisearch in (y/n) time. The entire multisearch algorithm consists of
iterating the log-phase algorithm O([;z]) times.

Let G(S)={Hy,...,Hy,,T1,..., Tk} be an a-splitting of G such that
for every edge (v1,v2) € S (directed from vy to v3), v; € H; and vy € T},
for some 1 < ¢ < ky,1 < j < ky. Recall that this implies 0 < a < 1,
|H;| = O(n®), and |T;| = O(n®).

We assume that the a-splitter S is known a priori. That is, initially the

processor that stores vertex v € V also stores an index indicating the graph
in G(S) to which v belongs. We can also assume, without loss of generality,
that G(S)is normalized. That is, we can assume that k = ki +ky = O(n!™%);
see Section 2.4.1. Otherwise, we group the subgraphs H; (T;) such that each
resulting subgraph has size ©(n®). This operation is easily performed on a
mesh of size n in O(y/n) time. Furthermore, the algorithm described in this
section does not require that every subgraph in G(S) consist of only one
connected component of the graph (V, E — 5).

Before presenting our mesh algorithm for one log-phase of the multi-
search problem for ¢) on G, we observe some properties of a-partionable

18

graphs.

Property 2 Let G(S) = {H1,...,Hy,, T1,..., Tk, } be an a-splitting of G.
Then the following hold.

o A query q that has a node of a subgraph H; in its search path does not
visit any node of another subgraph H;, v # j.

e Once a query q has visited a node in a subgraph T;, all subsequent
nodes visited by q will be in the same subgraph T;.

Proof: The proof follows from the fact that edges of an a-partitionable
graph are either directed from some H; to some T}, or have both endpoints
in the same subgraph H; or T;. O

Algorithm 2: Implementation of one log-phase of multisearch on a directed
a-partionable graph.

1. If this is the first log-phase, then every query ¢ € @ visits the first
node in its search path; otherwise, every ¢ € @) visits the next node in
its search path.

2. Constrained-Multisearch ({Hy,..., Hy,, T1,..., Tk, }, @).
3. Every ¢q € @ visits the next node in its search path.
4. Constrained-Multisearch ({H1,..., Hy,, T1,..., Tk, }, @).

Lemma 4 One log-phase of multisearch on a directed a-partionable graph
of size n can be performed in ©(\/n) time on a mesh of size n.

Proof: We first consider the correctness of Algorithm 2. The algorithm
is based on the following. Initially, every query starts at the first node
in its search path, which is in some H;, 1 < 1 < Ky, or T;, 1 < 5 <
ks. Using Constrained-Multisearch, every query is advanced until it visits
either its log, n successors, or needs to visit a node that is not in its initial
subgraph, at which point it stops. Next, every query is advanced one node
and then Constrained-Multisearch is performed again. So, by 2 applications
of Constrained-Multisearch, every query will be advanced at least log, n
nodes. (Note, if there are fewer than log, n nodes in a given search path,
then that query will terminate at the appropriate time.) Property 2, it
follows that for every query g € @, one of the following cases must apply:

19

1. All nodes visited by ¢ within the log-phase are in one subgraph H;.
2. All nodes visited by ¢ within the log-phase are in one subgraph 7.

3. Within the log-phase, query ¢ first visits only nodes within one sub-
graph H;, and once it “leaves” H; it will only visit nodes in one sub-
graph T7.

For those queries to which either Case 1 or Case 2 applies, all nodes vis-
ited on the search path during the log-phase are visited during Steps 1
and 2; see Lemma 3. Let g be a query to which Case 3 applies, and let

(V1,. .., V5,Vp41,...,0y) be the sequence of nodes to be visited within the
log-phase, where vy,...,v, are in some subgraph H;, and v,41,...,v, are
in some subgraph T;. It follows from Lemma 3 that v;,...,v, are visited

during Steps 1 and 2, and that v,44,...,v, are visited during Steps 3 and
4.
From Lemma 3 it also follows that Algorithm 2 has time complexity
0O(y/n) and requires only (1) memory per processor. O
Therefore, by iterating Algorithm 2 O([;=-]) times, the multisearch
gn
problem can be solved for a-partitionable graphs.

Theorem 5 Let G be a directed a-partionable graph of size n, and let) =

{q1, -, qm} be a set of m = O(n) search queries. Then the multisearch
problem for @ on G can be solved in O(/n + r%) time on a mesh of size

n, where r is the length of the longest search path associated with o query
geq. O

3.2.3 The Multisearch Problem for Undirected «a-G-Partitionable
Graphs

Let G = (V, E)be an (undirected) a-fF-partionable graph. Let Q@ = {q1, ..., ¢}
be the set of m = O(n) search queries, and let r denote the length of the
longest search path associated with a query ¢ € @. In this section, we present
an algorithm to solve the multisearch problem for @ on G in O(\/n + rk\)/gﬁn)
time. As in Section 3.2.2, we will again give an algorithm to execute one log-
phase of the multisearch problem in ©(y/n) time. The multisearch algorithm
will consist of iterating this log-phase algorithm O([z]) times.

Let S; and Sy be an a-splitter and a G-splitter, respectively, of G such
that S; and Sy have distance (logn). We assume that S; and S, are

known a priori. That is, initially the processor that stores vertex v € V also

20

stores an index indicating the graph G(.S1) to which » belongs, and an index
indicating the graph G(S3) to which v belongs..

With the same argument as in Section 3.2.2, we also assume that G
and G(S;) are normalized. Let G(S1) = {W{,...,W] } and G(S
{Wi,...,W2 3. Recall that 0 < a < 1,0 < § < 1, [W!| = O
W2 = 0(nP), ky = O(n'~%), and ky = O(n'~7).

We first state a property of a-f-partionable graphs that will be used in
the algorithm.

Property 3 Let S1 and Sy be an a-splitter and B-splitter, respectively, of
G, such that S1 and Sy have distance Q(logn). Then, if at any stage of
the multisearch, a query g € Q wisits a node v at the border of Sy, it can
advance Q(logn) more steps in its search path without visiting a node v’ at
the border of Ss.

Proof: The proof follows immediately from the definition of a-G-partitionable
graphs. O

Algorithm 3: Implementation of one log-phase of multisearch on an a-§-
partionable graph.

1. If this is the first log-phase, then every query ¢ € @ visits the first
node in its search path; otherwise, every ¢ € @) visits the next node in
its search path.

2. Constrained-Multisearch ({W7,..., W} }, a).
3. Every ¢q € @ visits the next node in its search path.

4. Constrained-Multisearch ({WZ,.. .,W,i}, B).

Lemma 6 One log-phase of multisearch on an (undirected) a-f-partionable
graph of size n can be performed in ©(\/n) time on a mesh of size n.

Proof: We first consider the correctness of Algorithm 3. The algorithm
is based on the following. Initially, every query starts at the first node in
its search path. Using Constrained-Multisearch on G(S;), every query is
advanced until it visits either its log, n successors, or needs to visit a node
that is not in its initial subgraph, at which point it stops. Next, every
query is advanced one node and then Constrained-Multisearch is performed
again, but this time with respect to G(S3). Notice that by performing the

21

second application of Constrained-Multisearch with respect to G(S3), every
query that had reached a border of G(S3) will be able to advance Q(logn)
more steps in its search path without visiting another node at the border of
So; by this time, the log-phase is completed. Therefore, by 2 applications
of Constrained-Multisearch, every query will be advanced at least log, n
nodes. (Note, if there are fewer than log, n nodes in a given search path,
then that query will terminate at the appropriate time.) That is, for every
query ¢ € @, one of the following cases applies:

1. All nodes visited by ¢ within the log-phase are in one subgraph W}.
2. All nodes visited by ¢ within the log-phase are in one subgraph W?2.

3. Within the log-phase, query ¢ first visits some nodes in one subgraph
W' of G(S1). Once it “leaves” W, it is sufficient (for the completion
of a log-phase) to consider only the subgraph W? of G(S,) visited at
that point in time, and let the query continue on its search path until

it reaches a vertex at the border of S5.

The correctness of Algorithm 3, as well as the time and space complexity,
follow immediately from Lemma 3. O

Therefore, by iterating Algorithm 3 O([1) times, the multisearch
problem can be solved for a-g-partionable graphs.
Theorem 7 Let G be an (undirected) a-f-partitionable graph of size m,
and let Q@ = {q1,....,qm} be a set of m = O(n) search queries. Then the

multisearch problem for @ on G can be solved in O(\/n + rk\)/gﬁn) time on a

mesh of size n, where r is the length of the longest search path associated

with a query. O

4 Implementing Parallel Data Structures on a Mesh-
Connected Computer

In this section, we illustrate the use of the multisearch techniques presented
in Section 3. The multisearch technique for partitionable graphs, described
in Section 3.2, can be immediately applied to parallelize standard query
processes on balanced search trees. When processing many such queries
independently and in parallel, the query paths may overlap arbitrarily. Of
particular interest are online processes where the paths taken by the queries

22

can not be computed a priori. Such cases occur, for example, when no global
order exists for the set of queries and data.

We give two simple illustrations of possible applications. Consider a set
S of » non intersecting line segments spanning a vertical slab. Each query
consists of a point within the slab, for which the two segments determining
the region containing that point must be computed. The obvious sequential
solution is to build a balanced binary tree for the line segments and answer
queries by a straight forward tree search. Using our multisearch technique,
a set @ of n such queries can be processed in time O(y/n) on a mesh of size
n. Note that, there exists no total ordering on the set Q U S.

Now, consider the problem of determining the “best” common ancestor
of a pair of nodes in a tree. Such a problem occurs, e.g., in clustering
[17]: given a hierarchical agglomerative clustering scheme, determine for
two data elements the “best” cluster (e.g., the cluster with closest cluster
center) containing both elements. The obvious sequential solution to the
general “best” common ancestor problem, in a tree of size n, is to visit the
path of all common ancestors in the tree while maintaining the current best
element. Using our multisearch technique, a set of n such queries can be
processed in time O(y/n) on a mesh of size n.

The multisearch techniques for multiple online overlapping queries on
partitionable graphs also supports cases where queries may change directions
independently. For example, in a tree, queries may move both upwards and
downwards during the search. Possible applications include cases where each
query performs an inorder traversal of a certain subtree [7].

An interesting application of multisearch techniques for hierarchical DAGs
(Section 3.1) are mesh implementations of Kirpatrick’s subdivision hierar-
chies. In [6], O(lognlog* n) time deterministic and O(logn) time random-
ized PRAM algorithms are presented for constructing two well known data
structures, namely, the subdivision hierarchy for a planar graph (with n
nodes) and the hierarchical representation for a convex polyhedron (with
n vertices). Both are hierarchical DAGs of size O(n) with triangles and
triangular faces, respectively, associated with their vertices. As stated in
[6], once these hierarchies are given, the following problems can be solved in
time O(logn) on the PRAM.

¢ Multiple planar point location: Given a planar graph G of size n,
and n points in the plane, determine for each point p the face of G
containing p.

e Multiple line-polyhedron queries: Given a 3-d convex polyhedron

23

P of size n, and n lines in 3-space, determine for each line [whether it
intersects P and, if not, determine the two planes through [that are
tangent to P.

e 3-d convex polyhedron separation: Given two convex 3-d polyhe-
dra P and (), each of size n, determine whether or not there exists a
plane which separates P and Q.

¢ Merging 3-d convex hulls: Given two separated convex 3-d poly-
hedra P and @, construct the convex hull of the union of P and Q.

The first two problems can be solved in O(logn) time for a single query
on a sequential machine [19, 10]. Therefore, for the CREW PRAM, both
problems can be solved in O(logn) time by assigning one processor to each
query and performing the sequential algorithm concurrently for all proces-
sors. The third problem can be reduced to a linear number of independent
line-polyhedron queries [6, 11]. The major step in solving the fourth prob-
lem consists of determining for each vertex/edge/face of P and @, whether
it is a vertex/edge/face, respectively, of the convex hull of the union of P
and @. With this information, the hulls can be merged by a fixed number
of parallel prefix operations. As presented first in [1], with corrected ver-
sions in [9] and [3], each edge of P can locally determine whether or not it
is in the convex hull based on the result of its line-polyhedron query with
respect to Q. Hence, the problem of merging 3-d convex hulls reduces to 2n
line-polyhedron queries.

For the mesh-connected computer, it has been shown in [9] that the
subdivision hierarchy for a planar graph (with n nodes), as well as the
hierarchical representation for a convex polyhedron (with n vertices), can
be constructed in time O(y/n) using O(n) processors. Using Theorem 2, we
obtain

Theorem 8 The following problems can be solved in time ©(\/n) on a mesh
of size n.:

1. Multiple planar point location. >

2. Multiple line-polyhedron queries.

3A ©(y/n) time mesh algorithm was first presented in [18]. The problem is listed here
only to show that, within the multisearch framework, a ©(4/n) time algorithm is now
obvious.

24

3. 3-d convex polyhedron separation.

4. Merging 3-d convex hulls; determining the convexr hull of n points in

3-space. *

5 Conclusion

In this paper, we have considered the multisearch problem for O(n) search
queries on a data structure modeled as a graph G with n constant-degree
nodes. We have presented a O(y/n + r%) time algorithm for performing,
in parallel, O(n) searches on a shared data structure stored in a /n X /n
mesh-connected computer. The main problem for the mesh, in comparison
to other networks like the hypercube, is that in order to obtain optimal
algorithms from multisearch, the time per advancement of all queries by one
step in their search paths must be O(%). That is, it must be less than
the diameter of the network. The algorithms presented here show how to
overcome this problem.

To illustrate the use of the multisearch techniques, we considered parallel
online traversals of trees and hierarchical representations of polyhedra. The
parallel mesh implementation of the latter one yields optimal mesh algo-
rithms for multiple lines-polyhedron intersection queries, multiple tangent
plane determination, intersecting convex polyhedra, and computation of the
three-dimensional convex hull. We believe that the multisearch problem
is such a fundamental problem that we expect it to have many additional

applications (e.g., in parallel databases and related areas).

Acknowledgement. The authors are grateful to the referees for their help-
ful comments. Useful conversations with Professors Susanne Hambrusch and
Rao Kosaraju are also gratefully acknowledged.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. O’Dunlaing, and C. Yap. Par-
allel computational geometry. Algorithmica, 3(3):293-327, 1988.

*Other optimal mesh solutions have recently been obtained [20, 16] independently of
ours and using very different, purely geometric approaches, rather than the multisearch
method we use.

25

[2]

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analy-
sis of Computer Algorithms. Addison-Wesley, Reading, Massachusetts,
1974.

N. Amato and F. P. Preparata. The parallel 3D convex-hull prob-
lem revisited. Technical Report UILU-ENG-90-2251, Coordinated Sci-
ence Laboratory, University of Illinois at Urbana-Champaign, Novem-
ber 1990.

M. J. Atallah and S. Hambrusch. Solving tree problems on a mesh-
connected processor array. Information and Control, 69:168-186, 1986.

B. Chazelle. An optimal algorithm for intersecting three-dimensional
convex polyhedra. In Proceedings of the 30th Annual IEEE Symposium
on Foundations of Computer Science, pages 586-591, 1989.

N. Dadoun and D. G. Kirkpatrick. Parallel construction of subdivi-
sion hierarchies. In Proceedings of the Third Annual Symposium on
Computational Geometry, pages 205-214, 1987.

F. Dehne, A. Ferreira, and A. Rau-Chaplin. A massively parallel
knowledge-base server using a hypercube multiprocessor. In Proc. IEEE
International Conference on Tools for Artificial Intelligence, Washing-
ton, D.C., 1990, pp. 660-666.

F. Dehne and A. Rau-Chaplin. Implementing data structures on a
hypercube multiprocessor and applications in parallel computational
geometry. Journal of Parallel and Distributed Computing, 8(4):367-375,
1990.

F. Dehne, J.-R. Sack, and I. Stojmenovic. A note on determining the
3-dimensional convex hull of a set of points on a mesh of processors. In
Scandinavian Workshop on Algorithm Theory, pages 154-162, 1988.

D. P. Dobkin and D. G. Kirkpatrick. Fast detection of polyhedral inter-
section. In Proceedings of the International Colloquium on Automata,
Languages, and Programming, pages 154-165, 1982.

D. P. Dobkin and D. G. Kirkpatrick. A linear time algorithm for de-
termining the separation of convex polyhedra. Journal of Algorithms,
6:381-392, 1985.

26

[12]

[13]

[18]

[19]

[20]

H. Edelsbrunner. A new approach to rectangle Interseactions - Part L.
International Journal of Computer Mathematics, 13:209-219, 1983.

H. Edelsbrunner. A new approach to rectangle Interseactions - Part II.
International Journal of Computer Mathematics, 13:221-229, 1983.

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag, Berlin, 1987.

X. He and R. Miller. Optimal mesh algorithms for maximal indepen-
dent subset and 5-coloring. Tech. Rep. 90-27, Department of Computer
Science, SUNY-Buffalo, October, 1990.

J. A. Holey and O. H. Ibarra. Triangulation in a Plane and 3-D convex
hull on Mesh-Connected Arrays and Hypercubes. Tech. Rep., Univ. of
Minnesota, Dept. of Computer Science, 1990.

A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice
Hall Advanced Reference series, USA, 1988.

C. S. Jeong and D. T. Lee. Parallel geometric algorithms on a mesh
connected computer. Algorithmica, 5(2):155-178,1990.

D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Jour-
nal of Computing, 12(1):28-35, 1983.

D. T. Lee, F. P. Preparata, C.S. Jeong and A. L. Chow. SIMD Parallel
Convex Hull Algorithms, Northwestern Univ. Tech Report AC-91-02,
March 1991.

R. Miller and Q. F. Stout. Efficient parallel convex hull algorithms.
IEEFE Transactions on Computers, 37(12):1605-1618, December 1988.

R. Miller and Q. F. Stout. Parallel Algorithms for Reqular Architectures.
MIT Press, 1991.

R. Miller and Q. F. Stout. Mesh computer algorithms for computational
geometry. IEEE Transactions on Computers, January 1989.

D. Nassimi and S. Sahni. Bitonic sort on a mesh-connected parallel
computer. IEEE Transactions on Computers, C-27(1):2-7, January
1979.

27

[25] D. Nassimi and S. Sahni. Data broadcasting in SIMD computers. [EEE
Transactions on Computers, C-30(2):101-107, February 1981.

[26] W. Paul, U. Vishkin and H. Wagener. Parallel dictionaries on 2-3
trees. in Proceedings 10th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), LNCS 154, Springer-Vergerlag,
Berlin, 1983, pp. 597-609.

[27] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-
Verlag, Berlin,1985.

[28] H. Samet. The quadtree and related hierarchical data structures. Com-
puting Survey, 16(2):187-260, June 1984.

[29] C.D. Thompson and H. T. Kung. Sorting on a mesh-connected parallel
computer. Communications of the ACM, 20(4):263-271, April 1977.

[30] J. J. Tsay. Techniques for Solving Geometric Problems on Mesh-
Connected Computers. PhD thesis, Dept. of Computer Sci., Purdue
Univ., 1990.

[31] J. J. Tsay. Searching tree structures on a mesh of processors. To appear
in Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1992.

28

Figure 1: A Hierarchical DAG with p = 2.

Figure 2: A Directed Balanced Binary Tree And Its a-Splitter (a =).

29

Figure 3: A Undirected Balanced Binary Tree With Its a-Splitter Sy (o = 1)

And p-Splitter Sy (8 = %), Such That S; And Sy Have Distance % =
Qlogn).

30

Figure 4: Hlustration of the Definition of Subgraphs B;.

Figure 5: Illustration of the Definition of Subgraphs B} And B2.

31

