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Abstract

In this paper, we present optimal parallel algorithms for optical clus-
tering on a mesh-connected computer. Optical clustering is a clustering
technique based on the principal of optical resolution, and is of particu-
lar interest in picture analysis. The algorithms we present are based on the
application of parallel algorithms in computational geometry and graph the-
ory. In particular, we show that given a set S of N points in the Euclidean
plane, the following problems can be solved in optimal O(v/N ) time on a
mesh-connected computer of size N.

1. Determine the optical clusters of S with respect to a given separation
parameter.

2. Given an interval [a,)] representing the number of optical clusters
desired in the clustering of S, determine the range of the separation
parameter that will result in such an optical clustering.

Keywords: mesh-connected computer, optical clustering, image process-
ing, computational geometry, connected components.



1 Introduction

This paper is concerned with parallel solutions to two problems in the area
of clustering on a mesh-connected computer. We study the parallelization
of optical clustering [D86], which is a clustering technique based on the
principal of optical resolution, and which is of particular interest in picture
analysis. The algorithms we present are asymptotically optimal for the
mesh-connected computer.

The input to both problems is a set of N points in the plane, which usu-
ally represent the pixels of an image (see Figure 1). For the mesh-connected
computer, each processor initially stores one of the input points, with an
arbitrary assignment of points to processors. For optical clustering [D86], a
relation connectedis defined as follows. Two points are connected if and only
if there exists a circle with radius < r containing the two points. Since the
transitive closure of this relation is an equivalence relation, the connected
components of a set of points are defined to be the equivalence classes gener-
ated by the transitive closure over the relation connected. The first clustering
problem studied in this paper consists of computing the equivalence classes
(i.e., determining the connected components) for a given parameter r. The
second clustering problem, which is more difficult, is the inverse problem.
As input we specify a range over the number of connected components we
expect. The problem is to determine a maximal interval for the parameter r
such that the number of components of the respective clusterings is within
the specified range. Sequential O(N log N) time solutions to both problems
have been presented in [D86)]. In this paper, we present optimal O(v/N) time
parallel algorithms for the mesh-connected computer. A direct paralleliza-
tion of the algorithms presented in [D86] would yield O(V/Nlog N) time
parallel solutions on the mesh-connected computer. The main contribution
of this paper is a non-trivial data compression technique which reduces the
time of the mesh-connected computer algorithm to O(v/N), which is opti-
mal. Our solutions to these clustering problems involve parallel techniques
and algorithms from computational geometry and graph theory.

Our main motivation for studying parallel optical clustering on the mesh
is that (1) the mesh-connected computer is a very popular architecture for
image processing and (2) optical clustering, as part of a picture recognition
system, often has on-line response time requirements, which can only be met
by using parallel architectures or by creating customized hardware. Next,
we outline particularly interesting applications of our techniques which have
such on-line requirements. These problems were brought to our attention



by Ed Cohen and Jon Hull from the CEDAR project at the University of
Buffalo.

The second clustering problem outlined above has applications in pattern
recognition systems where one knows a range in the number of objects that
are anticipated, and would like to perform a clustering operation that will
yield the anticipated number of objects. For example, such knowledge can be
exploited when considering the digitization of a handwritten social security
number, where one would anticipate approximately 11 distinct objects (9
digits and two hyphens). In fact, since some of the handwritten digits in a
social security number may overlap each other, while other individual digits
might not even be connected, a suitable range in the number of clusters
expected for a handwritten social security number might be, say, between 7
and 15. Once the objects are identified, there are numerous strategies, such
as template matching or recognition based on feature sets, for attempting
to recognize the digits. Another interesting application of optical clustering
arises in the problem of determining the location of a handwritten address
on an envelope [PS592].

The remainder of this paper is organized as follows. In Section 2, the
mesh-connected computer and the two problems considered in this paper are
defined. In Section 3, we present optimal mesh solutions to both clustering
problems. Section 4 outlines how these results can also be applied to images
represented by chain codes, and Section 5 concludes the paper.

2 Definitions

In this section, we define the mesh-connected computer and the optical
clustering problems considered in this paper.

2.1 The Mesh-Connected Computer

The mesh-connected computer (mesh) of size N is an SIMD machine with
N simple processors arranged in a square lattice. To simplify exposition, it
is assumed that N = 4°, for some integer ¢. For all ,5 €[0,...,N1/2 — 1],
let P; ; represent the processor in row ¢ and column j. Processor P;; is con-
nected via bidirectional unit-time communication links to its four neighbors,
Pi_1,j, Piy1,js Pijj-1, and P; j;1, assuming they exist. Each processor has a
fixed number of ©(log N )-bit words of memory (registers), and can perform
standard arithmetic and Boolean operations on the contents of these regis-



ters in unit time. Each processor can also send or receive a word of data to
or from each of its neighbors in unit time.

The communication diameter of a mesh of size N is ©(v/N), as can be
seen by examining the distance between processors in opposite corners of
the mesh. This means that if a processor in one corner of the mesh needs
data from a processor in another corner of the mesh at some time during
an algorithm, then a lower bound on the running time of the algorithm is
Q(VN). It is easy to see that, because of the communication diameter, the
problems in this paper have time complexities Q(v/N).

In this paper, we will frequently use O(v/N) time standard mesh opera-
tions such as sorting, random access read, random access write, compression,
and parallel prefix. The reader is referred to [L92, MS, NS79, NS81, TK77),
and the references contained therein, for complete descriptions, algorithms,
and analyses of these operations.

2.2 Optical Clustering

This section gives a brief review of the definition and some basic properties
of optical clustering as described in [D86].

Let § = {s1,...,5n} be a set of N disjoint objects in n-space, ®" (i.e.,
compact subsets of " without holes). Let d : R* x ®* — R* be a convex
distance function, where R* is the set of positive real numbers. For two
objects s,s' € S, define d(s,s') as the minimum distance d(z,z’) between
two points z € s,z’ € s'. Finally, let ¢(P,r) = {z € ®" | d(P,z) < r} denote
the ball with center P € ®" and radius r.

Consider two objects s;,s; € §. We say that s; and 8; are r-connected,
denoted by s; O s;, if and only if there exists a ball ¢(P, '), with ' < r,
such that ¢(P,7') N s; # @ and ¢(P,7') N s; # 0.

Since the transitive closure of the r-connected relation, denoted c(Oy),
is an equivalence relation, we define the optical clusters with respect to sep-
aration parameter r as the equivalence classes of ¢l(®,).

Figure 2a illustrates the optical clusters of an 11 object set S/ in 2. No-
tice that the optical clustering of S’ for the given value of r (illustrated by the
balls of radius r) results in three clusters, namely, {si,...,ss}, {ss,..-, 310}
and {s;1}.

Let m(S,r) denote the number of optical clusters of S with respect to
r. Clearly, as r increases to infinity, the number of optical clusters m(S,r)
decreases to 1. In fact, m(S,r) is a monotonically decreasing function in r.
That is, r < 7' = m(S,r) > m(S,r').



Given the task of constructing the optical clusters of a set § of geo-
metric objects with respect to a separation parameter r, a naive solution
would be to compute the graph (5,®,) (see Figure 2b), and then find the
connected components of (S, ®,). The drawback to this approach is that it
involves computing the connected components of the graph (5, ®,), which
has size O(N?), since in the worst case it may be a complete graph on the
N vertices. As an illustration of this, consider the optical clusters of the
set S” = {se,...,810} from Figure 2a. Every object in §” is r-connected
to every other object in S” (witness the ball in the center of S”), implying
that (S”,®,) has |S”|? edges. The O(N?) size of (S, ®,) implies that the
processor-time product of the naive algorithm is (N %) in the worst case.

Consider s;,s; € S. We say that s; and s; are Delaunay connected with
respect to r, denoted by s;/\,s;, if and only if there exists an ' < r and
P € ®" such that d(P,s;) = r' = d(P,s;) and for all sx € § — {s;,5;},
d(P,s) > r' [D86]. Figure 3a illustrates the Delaunay connected relation
with respect to the same set of objects S’ given in Figure 2a.

It has been shown in [D86] that ¢l(A,) = cl(®,) and, for object sets in
R2, | A, | = O(N). Hence, relation A, induces the same clustering of S as
relation ©,, but it has only a linear number of elements.

Since we are only interested in the equivalence classes of cl(®,), we can
avoid the Q(N?) worst-case time-processor bound of the naive algorithm
by using instead the relation A,. The optical clusters of § with respect to
separation parameter r are exactly the connected components of the graph
(S, 4,), where (S, A,) denotes the graph with vertex set § and edge set con-
taining all edges between all pairs of vertices (s,s’) € A,. (See Figure 3b.)

Let V(S) and DT(S) denote the Voronoi Diagram and its dual, the
Delaunay Triangulation, of S, respectively [SH80, CD85); see Figure 4. It is
easy to see that DT(S) = U,»o Ar. Define for every edge (s,s') € DT(S)
with corresponding dual edge e in V(S) a label

min(s,s’) = min{d(s,z) = d(s',z) | z € e}

and call the labeled graph (S, DT(S)), with labeling (s,s’) — min(s,s’),
the cluster graph of S, denoted CG(S). As shown in [D86], it follows that
Dy = Ul(s,6)eDT(S) min(s ) <r] (85 8')-



3 Parallel Optical Clustering of Points Sets in E?

3.1 Computing Optical Clusters with Respect to a Given
Separation Parameter r

Let § = {s1,...,8n} be a set of distinct planar points, arbitrarily dis-
tributed one per processor on a mesh of size N. In this section, we consider
the problem of determining the optical clusters of § with respect to a given
separation parameter r. The algorithm consists of first constructing CG(S),
and then computing the connected components of an edge-restricted sub-
graph of CG(S).

In O(V/N) time, we can construct the Voronoi diagram V'(.5) and its dual,
the Delaunay triangulation DT(S), using the algorithm given in [JL87]. At
this stage, every processor stores one (arbitrary) edge of DT(S) and the
corresponding edge of V(5). To complete the construction of CG(S), we
compute in ©(1) time, simultaneously for every edge (s,s’) € DT(S), its
label min(s, s').

Lemma 1 The cluster graph CG(S) of a set of N points in the Euclidean
plane can be computed in optimal O(\/J_V— ) time on a mesh of size N.

Given the cluster graph CG(S) and a real value r > 0, we can com-
pute the optical clusters with respect to separation parameter r as follows.
Delete all edges (s,s’) € CG(S) with label min(s,s’) > r, and compute the
connected components of CG(S) with respect to the remaining edges. Note
that this operation gives us the optical clusters of § with respect to r and
allows us to compute the number of optical clusters, m(S, ), by a parallel
prefix operation. Since the connected components of a graph with O(N)
edges can be computed in O(v/N) time on a mesh of size N [HD92, RS], we
have the following.

Lemma 2 Given a set S of N points in the Euclidean plane, and a real
number r > 0, the optical clusters of S with respect to separation parameter
r can be computed in optimal O(v/N) time on a mesh of size N. In addition,
the number m(S,r) can be computed in optimal O(v/N) time.

3.2 Computing Optical Clusters with Respect to a Given
Range in the Number of Clusters Desired

In this section, we consider the problem of determining the maximal in-
terval for the separation parameter r such that the number of clusters of



the respective optical clusterings of a planar point set S is within a desired
range.

Consider Figure 1. If we perform optical clustering (as described in
Section 3.1) with respect to an r value that is too small, each cluster will
consist of exactly one point, providing us with little additional information
about the structure of the image. On the other hand, if we perform optical
clustering with respect to a value r that is too large, then all the points in the
image will form a single cluster, again providing little additional information
about the structure of the image. Clearly, knowledge of a suitable r implies
considerable knowledge concerning the structure of the image. In some
applications, whereas we may not know a “suitable” value for r, we may
have knowledge with respect to the number of optical clusters we expect the
image to consist of. For example, suppose one is to process the digitization of
some preprinted form. The fields might include information such as a social
security number, credit card number, date of birth, age, height, weight,
income, and so forth. For such fields, we can exploit our knowledge with
respect to an acceptable range of the number of clusters that is anticipated,
as discussed in further detail in the Introduction.

We will now show how knowledge about the expected number of clus-
ters can be used to compute a suitable range of values for the separation
parameter 7. Let [a,b], a < b, a,b € {1,...,N}, be an interval denot-
ing the desired range of m(S,r), the number of clusters of § with respect
to r. Let R(a,b) C R* denote the corresponding set of separation pa-
rameters. That is, 7 € R(a,b) means that m(S,r) € [a,b]. Let R(a)
be the largest value ' € R* such that m(S,7’) > a. Similarly, let R(b)
be the smallest value r' € R* such that m(S,7') < b. Since m(S,r)
is monotone and decreasing with respect to r, R(a,b) is the closed in-
terval [R(b), R(a)]. Let CG(S) have k edges, and let min,,..., min; be
the values of the labels of these edges in increasing sorted order. Thus,
m(S, miny) > m(S,ming) > ... > m(S, ming), and for all 4, 1 < i < k,
if r € [min;, min;y,), then m(S,r) = m(S, min;). Given the definition of
CG(S), notice that R(b) must be an element of {min, ..., min;}, and R(a)
must be a maximum end-point of some interval [min;, min;;;). Therefore,
we can determine R(a,b) by computing R(a) and R(b), where R(a) and R(b)
can be computed independently.

We will use a binary search type algorithm to determine R(a) and R(b).
Our algorithm will consist of 0 < ¢ < log; N phases, where in each phase,
the original graph CG will be further compressed. A similar compression
technique was previously used in [HD92]. Let CG; denote the compressed
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version of CG immediately following the tt* stage of the algorithm. Let CG}’
denote a copy of CG}, where all edges with labels m(S,s’) > r’ have been
removed. Phase 0 of the algorithm is defined by (i) setting CGo = CG(S),
where CG(S) is constructed as in Section 3.1, and (ii) setting go to either
a or b, depending on which one is being searched for. The nonincreasing
sequence < ¢; >= qo,- - ., qlog N i8 used to keep track of the number of optical
clusters remaining to be identified following the termination of phase i. The

tth

1.

phase of the algorithm is defined as follows.

Let CGi—y = (V,E) and CG; = (V', E'), where CG;_, is given and
CG is the graph to be constructed in the t** phase. Determine r’, the
median over the set of edge labels of CG;_;.

(a) Construct the graph CGj_; by eliminating all edges with labels
greater than or equal to 7/.

(b) Label the connected components of CG?._,.

(c) Compute the number of connected components of CG}._,.

TERMINATING CASES: (T1) If the number of connected compo-
nents of CG’_; = gi—1, then return r'. EXIT. (T2) If CG}_, consists
of a single edge with label [, then return either the label just greater
than ! or just less than ! in the sequence min,,..., mini, depending
on whether we are searching for R(a) or R(b), respectively. EXIT.

. CASE A: The number of connected components of CG7._, is less than

gi—1, i.e., ' is too large. Set E’ equal to the set of edges in CG]_,.
Notice that any vertex v € V not incident on an edge in E’ will remain
as a separate cluster for the remaining phases of the algorithm, since
in this binary search procedure the set of edges is never increased.
Therefore, identify the set U of connected components of CG{:_I which
contain exactly one vertex, and compute |U|, the number of single
vertex components in CG}._,. Set V' equal to V—U and ¢; = ¢;—1—|U]|.

CASE B: The number of connected components of CGY_, is greater
than g, i.e., ' is too small. This means that none of the edges in
CG7., has a label that results in g;—; clusters, and that every edge
in CG?_, links vertices that are members of the same optical cluster.
Therefore, collapse the connected components of CG}._; to form the
set V' of “Super-Vertices”, and let E’ be the set of edges (s, s') between



elements of V' such that there exists an edge e in CG;_; connecting
the components represented by s and s’. (Note: Remove all loops and
collapse multiple edges in E.) Notice that, as in CASE A, any singleton
vertex in (V’, E’) will remain as a separate cluster for the remaining
phases of the algorithm. Therefore, label the connected components of
(V', E), and identify the set W of connected components of (V’, E')
with exactly one vertex. Set V/ = V' — W and ¢ = ¢;—; — |W]|.

For the above algorithm, the correctness and time complexity depend on
the relationship between the size of graphs CG; and CG,_;. We show that
in each phase, the graph is compressed by at least a factor of g.

Lemma 3 | CG, |< § | CGi |

Proof: Let CG;_; have e edges and v vertices, and let CG, have €' edges
and v’ vertices. Since r’ is the median over all edge labels in CG;_q, the
result of either CASE A or CASE B is that half of the edges of CGs_;
are removed. Therefore, e’ < e/2. Further, since singleton vertices are re-
moved from either the connected components of CG}_, (CASE A) or the
connected components of (V’, E’) (CASE B), we know that v’ < v. Let
M = e + v be the size of CG;_;. Since there are no isolated vertices in
CGi-1, we have v < 2e. Therefore, M = e + v < 3e. Finally, we obtain
M =é+v'<etv<e/24v=€/2+M—-e=M—-e/2< M-M/6 = M. 0O

Given the preceding lemma, we can use standard mesh techniques (cf.,
[MS] and the references contained therein) to compress the new graph con-
structed at the end of each phase into the upper-left m x m region of the
mesh, where m? < N/(£)!~1. Notice that standard mesh operations (cf.,
[L92, MS, NS80] and the references contained therein) such as sorting, broad-
casting, component labeling, random access read, random access write, and
paralle] prefix can be used to complete the t** phase of the algorithm on a

mesh of size N in O( \ /(‘E)NT-T) time. Therefore, the running time of the al-
5

gorithm is given by the recurrence T(N) = T(3N) + O(v/N), which implies
T(N) = O(vVN).

Theorem 4 Given a set S of N points in the Euclidean plane and an inter-
val [a,b] for the number m(S,r) of optical clusters desired in the completed
clustering of S, the range of values for the separation parameter r that will
result in such an optical clustering can be determined in asymptotically op-
timal O(V/N) time on a mesh of size N.

2




4 Optical Clustering for Chain Code Represen-
tations

In practice, the input is often not given as an image but in its chain code
representation. Chain codes are a classical approach in imag e processing
for representing regions by border codes [DWRS81, F74]. A c hain code
representation of a standard 8-connected component without holes is defined
by the starting location (z and y coordinates) of a pixel on the border,
followed by a sequence of directions indicating where the remaining border
pixels are with respect to, say, the counterclockwise direction. Chain codes
are used in many situations, such as handwriting analysis, where the image is
relatively sparse. This not only saves space, but because the representation
is often more compact, the algorithms that work on the chain codes are
much more efficient than algorithms that would work on the raw image.
Optical clustering methods can also easily be applied to chain codes without
expanding the chain code to the (in general much larger) image. Suppose
that an image is initially represented as a set of chain codes fo total length
¢, where each 8-connected component, as well as all holes of the component,
is represented by a labeled chain code. Further, suppose that each such
labeled chain code is stored in a contiguous set of processors on a mesh of
size ¢ (c.f., [DWRS81]). In time O(y/c), the chain codes can be transformed
into a labeled set S representing the coordinates of the border pixels. Then,
instead of solving the clustering problems for the chain codes, we simply
apply our clustering methods to S, which yields the required result. Note
that the size of s is still O(c).

5 Conclusion

In this paper, we presented asymptotically optimal mesh-connected com-
puter algorithms to solve two problems in optical clustering, both of which
are important in certain areas of image analysis. To the best of our knowl-
edge, these are the first parallel algorithms presented for these problems.
These techniques allow one to determine on a mesh-connected computer (1)
the optical clusters of a digitized picture for a given separation parameter r,
and (4i) the maximal interval for the separation parameter r such that the
number of clusters produced is within a certain range. This is important in
applications such as on-line processing of handwriting (e.f., in the processing
of handwritten forms) or determining the location of a handwritten address



on an envelope [PSS92].
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Figure 1: Sample Images
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(a) Relation r-connected for a Set S’ (b) The Graph (§',0,)
Figure 2: Illustration of the Relation r-connected
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(a) Relation Delaunay connected for a Set S’
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Figure 3: Illustration of the Relation Delaunay connected

Figure 4: A Voronoi Diagram (Dashed Lines) and Delaunay Triangulation

(Solid Lines)
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