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Abstract

This paper considers a variety of geometric problems based in description of the lower en-
velope function, on input sets of size n using a coarse grained multicomputer model consisting
of p processors with (2) local memory each (i.e., (%) memory cells of O(logn) bits apiece),
where the processors are connected to an arbitrary interconnection network. We give an effi-
cient scaleable parallel algorithm for computation of the lower envelope and use this algorithm

to obtain efficient solutions for a variety of geometric problems, including

e the minimization of the Hausdorff distance between two finite sets on the real line when
one is subject to translation;

o the Common Intersection Problem for vertically convex planar polygons; and

e several problems in Dynamic Computational Geometry, in which we consider geometric
questions for systems of moving objects.

All of the algorithms presented are scaleable in that they are applicable and efficient over a very
wide range of ratios of problem size to number of processors. In addition to the practicality
imparted by scaleability, these algorithms are easy to implement in that all required communi-
cations can be achieved by a small number of calls to standard global routing operations.

Key words and phrases: parallel algorithms, computational geometry, scaleable algorithms,
coarse grained multicomputer, lower envelope

1 Introduction

Computational geometry is an important area of research with applications in computer image pro-

cessing, pattern matching, manufacturing, robotics, VLSI design, and so forth. A typical problem
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in parallel computational geometry calls for an efficient solution to a query involving n geometric
objects on a parallel computer with p processors. Most previous theoretical work in parallel com-
putational geometry has assumed fine grained parallelism, i.e., % = 0(1), for machine models
including the PRAM, mesh, hypercube, and pyramid computer [A&L93, M&S96]. However, since
most commercial parallel computers are coarse grained, it is desirable that parallel algorithms be
scaleable, i.e., implementable and efficient over a wide range of ratios of %. Recently, there has been
growing interest in developing scaleable parallel algorithms for solving geometric problems on coarse
grained machines (see [De&Dy95, DFR93, FRU95, DDDFK95]). This paper continues this effort by
describing new scaleable algorithms for a variety of problems based in computing a description of a

lower envelope function.

The paper is organized as follows.

e Section 2: We define the model of computation and discuss fundamental data movement

operations.

e Section 3: We give a nearly-optimal scaleable parallel algorithm that yields a description of

the lower envelope of polynomials of bounded degree.

e Section 4: Given two finite sets A and B in the Euclidean line, we give an efficient scaleable
parallel algorithm to compute a translation 7' of A that minimizes the Hausdorff distance

between T'(A) and B.

e Section 5: We give an efficient scaleable parallel algorithm to determine whether or not there is

a common intersection point among the members of a set of vertically convex planar polygons.

e Section 6: We give efficient scaleable parallel algorithms to solve a number of geometric ques-

tions concerning systems of moving point-objects.
e Section 7: We give some concluding remarks.

Some researchers feel that a “good” parallel algorithm is one with work (product of running
time and number of processors) the same as, or perhaps only slightly more than, that of the best

serial algorithm for the same problem. We note this goal is often impossible on certain parallel



architectures; e.g., on a fine grained mesh of n processors, optimal semigroup operations and sorting
of evenly distributed data take ©(n3/?) work [M&S96]; while, for problems of size n, serial semi-
group operations require ©(n) work and sorting requires ©(nlogn). We feel that in the world of
applications, users of parallel computers are often more interested in speed than in conservation of
work efficiency. We feel that all algorithms presented in this paper are efficient, in that their running
times are typically bounded above by an expression no larger than the sorting time for the volume
of output or the sorting time of a slightly larger volume of seemingly crucial intermediate data. In
section 2.3, we comment further on why we feel this is an appropriate standard of efficiency. All our
algorithms show significant speedup as compared with the best serial solutions to their respective
problems.

Preliminary versions of this paper appear in [BMR96a, BMRI6b]. Some of the results presented
in the current paper improve (in some cases, by correcting errors; in others, by sharper analysis

yielding faster running times) results of [BMR96a, BMRO6b].

2 Preliminaries

2.1 Model of Computation

The Coarse Grained Multicomputer model, or CGM(n,p) for short, considered in this paper consists
of a set of p processors with (7) local memory each (i.e., (%) memory cells of ©(logn) bits
apiece in every processor), either connected to some arbitrary interconnection network or sharing
global memory. Commonly used interconnection networks for a CGM include the 2D-mesh (e.g.,
Intel Paragon), 3D-mesh (e.g., Cray T30), hypercube (e.g., Intel iPSC/860) and the fat tree (e.g.,
Thinking Machines CM-5). Each processor may exchange messages of O(logn) bits with any one
of its immediate neighbors in constant time. For determining time complexities, we will consider
both local computation time and interprocessor communication time, in the standard way. The
term “coarse grained” refers to the fact that the size Q(%) of each local memory is assumed to be
“considerably larger” than ©(1). Our definition of “considerably larger” will be that % > p. This
implies that each processor has at least enough local memory to store the ID number of every other

processor. Typically, commercial Coarse Grained Multicomputers like the IBM SP2, Cray T30, Intel
Paragon, or TMC CM-5 have local memories > 32 Mbytes. For a more detailed description of the



model and its associated operations, see [DFR93].

Recently, there has been a growing interest in coarse grained computational models [Vali90,
CKPSSSSE, H&K93] and the design of coarse grained geometric algorithms [DFR93, FRU95,
DDDFK95]. The work on computational models has tended to be motivated by the observation
that “fast algorithms” for fine-grained models rarely translate into fast code running on coarse
grained machines. The BSP model, described by Valiant [Vali90], uses slackness in the number of
processors and memory mapping via hash functions to hide communication latency and provide
for the efficient execution of fine grained PRAM algorithms on coarse grained hardware. Culler et
al. [CKPSSSSE] introduced the LogP model which, using Valiant’s BSP model as a starting point,
focuses on the technological trend from fine grained parallel machines towards coarse grained sys-
tems and advocates portable parallel algorithm design. Other coarse grained models, including the
C3 [H&K93] and the Coarse Grained Multicomputer (CGM) model used in this paper [DFR93],
focus more on utilizing local computation and minimizing global operations.

The assumption % > p (equivalently, n > p?) implies, for example, that for a machine to process
100,000 data items over 100 processors, each processor must have a capacity of at least 1,000 data
items. This is in contrast to the fine-grained model, in which each processor is expected to store

only a small (e.g., less than 10) number of data items.

2.2 Terminology, Notation, Assumptions

Throughout the paper, we use R? to denote Euclidean d—dimensional space.
Sorting is used in most of the algorithms presented in this paper. We therefore assume that our
data sets may be linearly ordered in some fashion that should be clear from context.
!

A set of k—tuples X = {(21,2,...,2r)} is in lezicographic order if (z1,...,xzx) < (2,...,z})

means
e x; < x;0r

e for some integer j, 1 <j <k, z1 =z} and 2o =25 and ... and z; = :1:3 and zj41 < a:;.+1.



2.3 Fundamental Operations

For a given problem, suppose T, and T}, are, respectively, the running times of the problem’s best
sequential and best parallel solutions. If T}, = @(%), then the parallel algorithm is optimal,
to within a constant factor. In practice, analysis of a CGM algorithm usually must account for
the time necessary for interprocessor communications and/or data exchanges (e.g., in global sorting
operations) in order to evaluate Tp,,. The time for these communications may be asymptotically
greater than @(%).

We denote by Tsore(n,p) the time required by the most efficient algorithm to sort ©(n) data
on a CGM (n,p). Sorting is a fundamental operation that has been implemented efficiently on all
models of parallel machines (theoretical and existing). Sorting is important not only in its own right,
but also as a basis for a variety of parallel communications operations. In particular, each of the

following data movement operations can be implemented via sorting.
e Multinode broadcast: Every processor sends the same ©(1) data to every other processor.

o Total exchange: Every processor sends (not necessarily the same) ©(1) data to every other

processor.

o Semigroup operation: Let X = {zi,...,z,} be data distributed evenly among the processors
and let o be a binary operation on X that is associative and that may be computed in ©(1)
serial time. Compute xz; o 2 o ... 0 x,. Examples of such operations include total, product,

minimum, maximum, and, and or.

o Parallel prefiz: Let X = {x1,...,2,} be data distributed evenly among the processors and
let o be a binary operation on X that is associative and that may be computed in ©(1) serial

time. Compute all n members of {z1, 1022, ..., T10x20...0z,}.

o Merge: Let X and Y be lists of ordered data, each evenly distributed among the processors,
with | X|+|Y]| = ©(n). Combine these lists so that X UY is ordered and evenly distributed

among the processors.

The following result will be useful in comparing the resources required by problems of different

sizes.



Lemma 2.1 For positive integers k,n,p, we have
k- Tsort(n,p) = O(Tsort(kn,p)) on a CGM (kn,p).

Proof: This follows from the fact that the work in sorting is superlinear in the amount of data

being sorted. &

Since p? < n, the running times in the next result improve the Tsoq¢(n,p) times of [DFR93] for

the same operations.
Proposition 2.2 The following operations may be performed on a CGM (n,p) in Tsort(p?, p) time.
o Multinode broadcast;

e Total exchange.

Proof: We give a proof for multinode broadcast. A proof for total exchange is similar and is left

to the reader. We give the following algorithm.

1. Let z; be the data value to be sent by processor P;, i € {1,...,p}, to all processors. In parallel,

every processor P; creates records (z;, 1), (%;,2), ..., (z;,p). This takes O(p) time.

2. Sort the p? records created above by the second component, so that (z;, j) ends up in P;. This

takes Tyort (p?,p) time.
The assertion follows. W
The following improves the Ts,q¢(n, p) running time of [BMR96a].

Proposition 2.3 A semigroup operation on evenly distributed daota 1, ..,%, may be implemented
in time @(%) + Tsort(p?,p) on a CGM (n,p). At the end of this operation, all processors have the

value of X = z10...0x,.
Proof: We give the following algorithm.
1. Without loss of generality, processor Py, k € {1,...,p}, has the data values

L (k—1)n L (k—1)n .-
I et

«yLkn .

kn
P



In parallel, each processor P, computes its partial product

9k = .'L'(k—p1)n+1 0$(k—p1)n+2 0...0%

\-:|§'

This takes ©(7) time.

2. Perform a multinode broadcast, in which processor Py sends g to all processors. By Proposi-

tion 2.2, this takes Tyt (p?, p) time.
3. Each processor computes g; 0 g2 0...0 g, in O(p) time.
Since p < n/p, the assertion follows. W

The following improves the Ts,q¢(n, p) running time of [BMR96a].

Proposition 2.4 A parallel prefix operation may be implemented in time @(%) + Tsort(p?,p) on
a CGM (n,p). At the end of the operation, the prefix 1 o x2 0 ...0 x; is in the same processor as

zi, 1 € {1,2,...,n}.
Proof: We give the following algorithm.

1. Without loss of generality, processor Py, k € {1,...,p}, has the data values

T (k— 1)n+1, T (k— 1)n+2, ceey .Z'an.
In parallel, each processor P, computes its prefixes r GRS i€ {l,2,..., %}, defined by
T (k— 1)'n.+1 = T (k— 1)'n+1,
Tw_” = TM_H_I O.’E@_H, i€ {27...,%}.
This takes G)( ) time. Observe processor P, now has its desired prefixes, r1,72, . T

2. Perform a multinode broadcast operation in which processor Py sends rx= to all processors.

F

By Proposition 2.2, this takes Tt (p?, p) time.

3. In parallel, each processor Py, 2 < k < p, computes the prefixes s, and t;, 7 € {1,2,. p

given by

[e]
<
o

n 2n O...0T (k=1)n,
p F3 — 5



n
thi = SEOoTk-1n ., 1€ {1,2,...,—}.
Ji . +i? { 3 &y Jp}

This is done in ©(%) time. The prefixes ¢;; are the results desired of the algorithm that

weren’t already computed in the first step.

The assertion follows. B

Proposition 2.5 Let X andY each be lists of ordered data, evenly distributed among the processors

of a CGM(n,p), where | X|+|Y| = ©(n). Then X and Y may be merged in Tsort(n,p) time.

Proof: Sort the list Z = X UY in Tyspri(n, p) time. W

3 Describing the Lower Envelope of Polynomials

Let S be a set of polynomial functions. Finding the lower envelope or minimum of S (equivalently,
the upper envelope or maximum) is fundamental to the solution of a variety of interesting problems.

The lower envelope of S = {f;: R = R' | i =1,...,n} is the function LE : R' — R! defined by
LE(z) = min{f;(z) |i=1,...,n}.

We will abuse notation and refer to this function as LE(S). We say a piece of LE(S) is a pair (f;, I),
where f; € S and I is a maximal interval on which LE(z) = f;(z) identically. Thus, the problem
of describing LE(x) is that of determining an ordered (by intervals) list of the pieces of LE(x).
Let k£ be a fixed positive integer. Suppose the members of S are all polynomial functions of
degree at most k. Then the maximal number of pieces of LE(S) is denoted by A(n, k). It was shown
in [Atal85a] that A(n,s) is the maximal length of a Davenport-Schinzel sequence [D&S65] defined

by parameters n and s as follows.

Definition 3.1 [Atal85a] Let n and s be positive integers. Let C,, = {c1,...,cn} be an alphabet of n
distinct symbols. Let Ly, 5 be the set of strings over Cy, that do not contain any c;c; as a substring and
that do not contain as a subsequence of their characters any of the following “forbidden sequences”

E};,i # j, defined for positive integer p by



CiCjC; ifs=1
Ef =< Ej‘'c; ifs=2p
Efjflci ifs=2p+1.

The strings in L, s are called Davenport-Schinzel sequences. W

Notice that the presence of some Ef; as a subsequence of the characters of a string z, not nec-
essarily as a substring of z, is sufficient to disqualify z from membership in L, ,. For example,
z = cicacscica € Ls o, since z contains as a subsequence of its characters the sequence E122 = c1¢2€1C2,
which is forbidden to members of L3 5.

The following is a generalization of Lemma 2.4 of [B&M89a].
Lemma 3.2 For all positive integers k,n, p, if p is a factor of n then
pA(n/p, k) < X(n, k).

Proof: The lemma is stated in the form in which it will be used later in the paper. We note it

suffices to prove the equivalent statement,
pA(n, k) < A(np, k), for all positive integers k,n, p. (1)

The proof of statement (1) is given by induction on p. For p = 1, the truth of statement (1) is
obvious.

Now suppose statement (1) is true for p < u, for some positive integer u. Recall the alphabet of
L,.isC, = {c1,...,¢n}. Let m = A(nu, k). Let @ € Ly, 1, be such that |a| =m. Leta=a; ...an
where a; € Cpy,1 <4 <m. Let m' = A(n, k). Let z € L, ;, be such that |z| = m'. Let z = 21 ...z

where z; € Cp,,1 <i<m/. Let 2’ = 21 ...z, where

s fm!

2i = Cputj ifzi = ¢, 1<i<m.

Then 2’ € Ly is defined over the alphabet C], = {cnu+1;Cnut2;---;Cn(ut1)}, Which is disjoint

from the alphabet C,,, on which z is defined, and |2’| = m'. Hence 2" = az' € Ly(y41),, and

An(u+1),k) > 2" = la| +]2'| = m+m' = Anu, k) + A(n, k)



> (by inductive hypothesis) uA(n, k) + A(n, k) = (u+ 1)A(n, k),
as desired. This completes the proof. B

The function A(n, k) is, at worst, slightly more than linear in n. In the following, a(n) is the

extremely slowly growing inverse Ackermann function (c.f., [H&Sh86]). We have the following.

Theorem 3.3 The following results concerning the function A(n,k) are known.
e \(n,1) =n and A\(n,2) = 2n — 1 [D&S65].
e \(n,3) = O(na(n)) [H&Sh8E).
o \(n,4) = O(n2%M) [Agar91].
e For s >4,

[ o - 200amm) if s is even;
An,s) = { O(n - 200m)“=108(a(m)))  if 5 is odd

[AShSh89]. m

In the following, we assume that & is a positive integer and that S is a set of functions, polynomials
of degree at most k (or more generally, k-intersecting [Hersh89), i.e., each pair of members of S has
graphs that intersect in at most k points). As was done in [Atal85a, B&M89a, B&M89b, Hersh89],

we also assume that for {f;, f;} C S, ¢ # j, all solutions of the equation

filz) = fi(x)

may be determined in ©(1) serial time. We note that somewhat different resources are required for

the case of functions with a common interval domain than for the more general case.

Theorem 3.4 [Atal85a] Let k be a fized positive integer and let S be a set of polynomial functions,
each of degree at most k. If all members of S are defined on the same interval, then the lower envelope
of S has at most \(n, k) pieces generated by members of S and may be described in O(A(n, k) logn)

serial time. A

10



Theorem 3.5 [H&Sh86, Wi&Sh88] Let k be a fized positive integer and let S be a set of polynomial
functions, each of degree at most k. If the domain of each member of S is an interval of R (not
necessarily the same interval for each member of S), then the lower envelope of S has at most

A(n, k + 2) pieces generated by members of S. B

Theorem 3.6 [Hersh89] Let k be a fized positive integer and let S be a set of polynomial functions,
each of degree at most k. If the domain of each member of S is an interval of R' (not necessarily the
same interval for each member of S), then a description of the lower envelope of S may be computed

in O(A(n, k + 1)logn) serial time. W

Theorem 3.6 is perhaps surprising, in light of Theorem 3.5. One might expect that the serial
time needed to produce the ordered list of O(A(n, k + 2)) pieces that describe the lower envelope
would be O(A(n, k + 2)logn). However, the algorithm of [Hersh89] uses a clever insight to reduce,
slightly, the running time to O(A(n,k + 1) logn).

For the following, it is useful to observe that 1 < p < n'/? implies log% = ©(logn). We therefore

will use the simpler logn in asymptotic expressions. We have the following (compare [DFR93]).

Theorem 3.7 Let k be a fized positive integer and let S be a set of polynomial functions, each of
degree at most k. Assume that, initially, descriptions of the members of S are stored O(%) per

processor. Then the lower envelope of S may be described using the following resources.

o ONA(Z,K),k+1)logn + Tuori(PA(Z, ), p)] time on a CGM(p AA(Z, k), k+2), p), if there

n
P
is an interval J C R' such that J is the domain of each member of S.

o O, k+2), k+1)logn + Tuors(pA(%, k+2),p)] time on a CGM (p AA(%, k+2), k+2), p)),
if the domain of each member of S is an interval in R' (not necessarily the same interval for

each member of S).

Proof: The following algorithm solves the problem for both cases. We analyze the cases sepa-

rately.

1. Let S; be the subset of S whose members are stored initially in processor P;. In parallel, each

processor P; computes sequentially LE(S;).

11



e If all members of S have the same interval domain, there are O()\(%, k)) pieces of LE(S;)
stored in P;. The time required is O(A(%, k) logn), by Theorem 3.4.

o If all members of S have some (not necessarily the same) interval for domain, there are
O(A(%, k+2)) pieces of LE(S;) stored in P;. The time required is O(A(%, k+1) logn),

by Theorem 3.6.

2. Globally sort the collection of pieces of Ui_, LE(S;) by the left endpoints of their intervals. In
the case of a common interval domain for members of S, each processor P; now has a new set
Vj of O(A(%,k)) pairs (fi, ) as described above, where each pair is a piece of some LE(Sj);
in the more general case under consideration, O(A(%,k + 2)) such pairs. As a result of the
sort, if j < j', (fi,I;) € Vj and (fi,Ij) € Vj, then the left endpoint of I; is less than or equal
to the left endpoint of I;.

e For members of S having common interval domain, this step requires Tsort(p )\(%, k), p)
time.
e For the more general case, this step requires Ts,q¢(p )\(%, k+ 2), p) time.

3. In parallel, each processor P; computes sequentially LE(V;). Since the members of V; need not

have the same domain, we use the algorithm of Theorem 3.6 for both cases under consideration.

e If the members of S have a common interval domain, the time required for this step is
O(/\(/\(%,k), k+1) logn), and LE(V;) has O(/\(/\(%,k), k + 2)) pieces.

e In the more general case, this step takes O(A(A(},k+2), k+1) logn) time, and LE(V})
has O(A(A(%,k +2), k +2)) pieces.

4. Let R; = (fi;,1;) be the rightmost piece of LE(V}). This is the only piece of LE(V;) whose
interval can intersect with the interval of a piece of LE(Vj) for j' > j. Perform a multinode
broadcast so that processor P; sends R; to all other processors. Hence, each processor now

stores all of Ry, ..., R,. By Proposition 2.2, this step requires Ts,¢(p?, p) time.

5. In parallel, each processor describes LE({R1,...,R,}) in O(A(p,k + 1) logp) time, using the
algorithm of Theorem 3.6. The number of pieces of LE({R1,...,Rp}) is O(A(p, k + 2)).

12



6. By our choice of the R;, we can describe pieces of LE(S) as follows. In parallel, each processor

P; merges the pieces of LE(V;) with those of LE({R1,...,Rp}).

o If the members of S have a common interval domain, this step takes O(A(A(%, k), k+2))
time, which, by Theorem 3.3, is O(A(AM(%, k), k + 1) logn).

e In the more general case we consider, this step takes O(/\(/\(%, k+2), k+2)) time, which,
by Theorem 3.3, is O(A(A(%,k +2),k + 1) logn).

7. There may be adjacent pieces with the same function, i.e., the previous step may have created
pieces (f;,I) and (f;,I') such that ¢ = j and the right endpoint of I coincides with the left
endpoint of I'. Wherever this happens, we combine the pairs into a single piece (f;, I U I').
This can be done via a parallel prefix operation. In the following, we use Proposition 2.4 to

justify our claimed running times.

o If the members of S have a common interval domain, the time required for this step is

p AA(E, ), k+2)

O( »

) + Toort(p®,p) = O /\(/\(%,k), k+2) + Toore(p*p)

= (as above) O[)\()\(%,k),k+1)logn + Toort(pA(=, k), p))-

n

_a

p

e In the more general case we consider, the time required for this step is

p )\()\(%,k +2), k+2)
p

O(

n
) + Tsort(pQ;p) = O( ’\(’\(E:k +2), k+2)) + Tsort(p2;p)
= (as above) O[)\()\(%,k +2),k+1)logn + Tsort(p)\(%, k+2),p)].
Thus, the required resources are as follows.

e For the case in which the members of S have the same interval domain, the algorithm uses

O ANE, k), b+ 1)logn + Toor(pA(Z,k),p)] time on a CGM(pA(Z, k), K +2),p).
e For the case in which we assume that the members of S have (not necessarily the same) interval
domains, the algorithm uses O[ A(A($,k +2),k +1)logn + Tsore(pA(T,k +2),p)] time on a

%
CGM(pAA(%,k+2), k+2),p). B

13



In the algorithm of Theorem 3.7, we produce a sorted (by intervals) list of
e O(A(n, k)) pieces in the case of all members of S having the same interval domain;

e O(A(n, k+2)) pieces in the case of all members of S having (not necessarily the same) interval

domains.

It follows by Theorem 3.3 and Lemma 3.2 that the time and memory resources required by our
algorithm are very close to optimal.
In the following, we discuss several applications of Theorem 3.7. We will use the following

abbreviations.

Tono(n, k,p) = A(A(%,k),kﬂ)logn + Tsm(pA(g,k),p);

CGMepy(n, k,p) = CGM(p )\()\(%,k), k+2), p);
Tho(,kp) = XAC K+ 2),k+ 1)logn + Toor AL,k +2),1);
CGMY,,(n,k,p) = CGM(p )\()\(%, k+2),k+2), p).
Following [Atal85a], we say the function f(t) has a jump discontinuity at w if both lim,_,,+ f(¢)

and lim,_,,- f(t) exist, and lim;_,,+ f(t) # lim;_,,~ f(¢); and the function f(¢) has a transition at

to if f(t) switches between being defined and undefined on either side of #o.
The next result is a generalization of the complexity bound for lower envelope functions to

functions with transitions and jump discontinuities.

Lemma 3.8 [B&M89a] Let k be a positive integer. Let fi1,..., fn be real-valued functions of time,
such that (a) every f; is continuous except for at most p; jump discontinuities, (b) every f; has at
most q; transitions, where (¢) p; + ¢; < k, and (d) no pair of distinct functions f; and f; intersect
more than s times. Then h(t) = min{ fi(t),..., fn(t)} has no more than \(n, s+2k) pieces generated
by {f1,---, fn}.- N

Theorem 3.9 Let s and k be positive integers. Let fi,..., fn be as in Lemma 3.8. Assume also

that the f; satisfy

e cach f; has a ©(1) storage description;

14



e cach value f;(t) may be computed in O(1) time by a single processor; and

e fori # j, there are at most s distinct real solutions to the equation f;(t) = f;(t), all of which

can be found by a single processor in ©(1) time.

Then the function h(t) = min{fi(t),..., fo(t)} can be constructed in Ten,(n, s + 2k, p) time by a
CGMeny(n, s + 2k, p).

Proof: The assertion may be proved by an argument that is virtually identical to that given for

Theorem 3.7. R

The next two lemmas will be useful when we combine piecewise defined functions.

Lemma 3.10 [B&M89a] Let f(t) and g(t) be functions from R' to R'. Let m and n be positive
integers. Suppose f(t) has m pieces and g(t) has n pieces. Then the intervals of pieces of f(t) have,

altogether, at most m + n nondegenerate intersections with the intervals of pieces of g(t). W

Lemma 3.11 [B&M89a] Let m and k be positive integers. Let f(t) and g(t) be functions from R
to R'. Suppose that for every piece of both f(t) and g(t), the function of the piece is a polynomial
whose degree is at most k. Assume that the intervals of the pieces of f(t) have m nondegenerate
intersections with the intervals of the pieces of g(t). Then the function min{f(t),g(t)} has at most
m(k + 1) pieces. &

4 Minimization of Hausdorff Distance

The Hausdorff distance [Nadl78] is a measure of how well two sets A and B resemble each other with
respect to their locations; if A and B are nonempty finite subsets of a Euclidean space, regarded as
statistical populations, this measure is an alternative to more common statistical measures of popu-
lation similarity. When A is subjected to a translation T so that h = H(T(A), B) is minimized, h
may be regarded as a measure of how well an image A matches a template B.

In this section, we let d(a,b) = |a — b| be the Euclidean metric for R'. We abuse notation and

write

d(z,A) = min{d(z,a) | a € A}.
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The “nonsymmetric” or “one-way” Hausdorff measure is

H*(A,B) = rgleajcd(a,B).

Thus, we have the following.
Proposition 4.1 Let AUB C R', |A| = m, and |B| = n. Then

H*(A,B) = max{H*({a},B)|acA}. W

The Hausdorff metric H(A, B) is defined [Nadl78] by
H(A,B) = max{H*(A,B),H*(B,A)}.
For AC R, t€ R, let
A+t = {a+t|aec A}l

In [R6te91], a serial algorithm is given to solve the following problem: Let A and B be finite subsets
of the real line. Find a translation ¢ of A so that the Hausdorff distance H(A + ¢, B) is minimized.
The algorithm of [R6te91] is dominated by the description of the function H(A + ¢, B), which is an
upper envelope problem. We give in Theorem 4.7 an efficient algorithm to solve this problem on a
coarse grained multicomputer.

It will be useful to assume the members of A and those of B are ordered:
a1 <az <...<pm, by <by<...<by,.

There is no loss of generality in making such an assumption, since if not initially known to be true,
this state can be achieved in Tsort(m, p) + Tsort(n, p) time on a CGM (m + n,p). In order to prove

Theorem 4.7, we use the following.

Lemma 4.2 [Réte91] Let AUB C R, |A| = m, and |B| = n. Suppose a; = by. Then, for all
teR, HA+¢,B)>|t|]. &

For each a € A, let f, : R* — R! be the function
fo(t) = H*({a+t},B).
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The assertions of the following Lemma are found in [R6te91]. We give a proof to clarify our

methods.

Lemma 4.3 Let a € A. Then f, is a continuous, piecewise linear function for which the graph of

each linear piece has slope in {—1,1}.

Proof: First, we show f, is piecewise linear, with slopes in {—1,1}. We consider the following

cases.

1. Suppose a + tg < b1. Then ty belongs to an interval Iy on which f,(t) = b1 — (a +t). Thus,
on Iy, f, has slope —1.

2. Similarly, if a + ¢t; > b, then #; belongs to an interval I; on which f, has slope 1.

3. The only remaining possibility is that there are consecutive members b;,b; 1 of B such that

b; < a+1t < bjy1. This requires consideration of two subcases.

e If t3 is such that b; < a+t3 < (b; + bi+1)/2, then t3 belongs to an interval I3 on which

fa(t) = a+t—b;. Hence, on I3, f, has slope 1.
o If ¢4 is such that (b; + bi11)/2 < a+t4 < b;j11, then t4 belongs to an interval I; on which

fa(t) = biz1 — (a+1). Hence, on Iy, f, has slope —1.

Thus, for all ¢t € R, t belongs to an interval on which the graph of f, has slope —1 or 1.
That f, is continuous follows from the fact that common endpoints of intervals discussed above

must belong to one of the following cases.

e a+t = b; € B. Then the formulas for both of the pieces of f, whose intervals intersect at

such a value of ¢ give f,(t) = 0.

e a+t = (b;+b;t1)/2 for some pair b;, b;11 of consecutive members of B. Then the formulas for
both of the pieces of f, whose intervals intersect at such a value of ¢ give f,(t) = (bj+1—b;)/2.

Lemma 4.4 Leta € A.
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e Suppose there exists to > 0 such that fo(to) < to. Then, for all t > to, fo(t) <t.

o Suppose there exists Ty < 0 such that fo(To) < |To|. Then, for all t < Tp, fo(t) < |t|.

Proof: Let to > 0 be such that f,(tg) < to. Let I be the interval of the linear piece of f, such
that tg € I. First, we claim that

for all ¢t € I such that ¢t > to, fo(t) <t. (2)

This claim follows from Lemma, 4.3.

Suppose there is a t1 > to such that f,(¢1) > t1. It follows from statement (2) that ¢ and t;
belong to intervals of distinct pieces of f,. Let t5 be the left endpoint of the interval of f, containing
t1. Without loss of generality, we may assume ¢, is minimal among endpoints ¢ of intervals I of
pieces of f, such that ¢t > to and such that I has a point ¢, satisfying fo(t«) > t..

Then ¢, is a right endpoint of a piece of f, on whose interval f,(t) < ¢, by (2). On the interval
[t2,t1], fo is continuous and differentiable, and w > 1. It follows from the Mean Value
Theorem of calculus that there exists 3 such that t2 < t3 < 1 and f.(¢3) > 1. This contradicts
Lemma 4.3. It follows that ¢ > to implies f,(t) < t.

The proof of the second assertion is similar and is omitted. B

Let F : R' — R! be a piecewise-defined function and let (f, I) be a piece of F. Let H : R' — R!
be a piecewise-defined function. We say (f,I) contributes to H if there is a subinterval J of I such
that H(t) = f(t) for all t € J.

We define the following functions:

e id: R' — R! is defined by id(t) = t for all t € R'.

e —id: R' — R! is defined by —id(t) = —t forallt € R

e For a fixed a € R, a,; : R* — R! is defined by a,;(t) = a+t—b;, for all t € R

e For a fixed a € R, B, : R — R! is defined by $,,;(t) = bit1 — (a +1), for all t € RL.

The following Proposition is essentially found in [R6te91], where it is stated in somewhat lesser

detail than is given below.
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Proposition 4.5 Let AUB C R, |A| = m, and |B| = n. Suppose a; = by. Then we have the

following.

o Ifa < by, the piece of f, that may contribute to H(A +t, B) is (B4,0,(—00,b1 —a]).

If a = by, the pieces of f, that may contribute to H(A + t, B) are

by — by
).

(—id, (—00,0]) and (id, [0,

Ifa =b; fori€ {2,...,n — 1}, the pieces of f, that may contribute to H(A +t, B) are

—bi—1

) b; biy1 —b;
(_Zd: [_ 9

,0]) and (id, [0, =),

If a = by, the pieces of f, that may contribute to H(A + t, B) are

- bn—l

(—1d, [—bn 5 ,0]) and (id, [0,00)).

If b; < a < bi11, the pieces of f, that may contribute to H(A +t, B) are

bi + biy1
2

(@ [(o b, PIFE —al) and (B, [P

—a,bi11 — al).

If a > by, the piece of f, that may contribute to H(a +t, B) is
(ata,n; [—(a = bn),00)).

Proof: That the pieces claimed indeed are pieces of f, may easily be checked by the reader. That

no other pieces of f, may contribute to H(a + ¢, B) follows from Lemma 4.2 and Lemma 4.4. B

Proposition 4.6 Let AUB C R, |A| = m, and |B| = n. Supposea; = bi. Then a description
of the function H(A +t, B) may be computed in

ODAC,3),2)logm + AAC,3),2)logn + Tuor(Am,3) + A(1,3),)]
time on a CGMY,,,(m +n,1,p), and this function has O(A(m,3) + A(n,3)) pieces.

Proof: We give the following algorithm.
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1. For each a € A, compute the (at most) two pieces of f, that can contribute to H(A + ¢, B)
described in Lemma 4.5. Let us denote these pieces by f,,1 and f,2. This is done via a
parallel search step in which each a € A finds the corresponding b; and b;;1 discussed in
Proposition 4.5, followed by sequential (within processors executing in parallel) construction

of the pieces, in Ts,rt(m + n,p) time.

2. Compute a description of the function H4 : R! — R!, defined as the upper envelope of
{fai> fai2}my. By Theorem 3.7, this requires T9,,(m,1,p) time, and H4 has O(A(m,3))
pieces. Note H4(t) may not be identically equal to H*(A + t, B); however, it follows from
Proposition 4.1 and Proposition 4.5 that any piece of H(A + t, B) that is contributed by a

piece of H*(A + t, B) is contributed by a piece of H4(t).

3. Note that the function H*(B, A + t) is identical to the function H*(B — t, A). Therefore, we
may similarly execute analogs of the previous steps to compute a description of the function
Hp : R' - R!, analogous to H4, from the (at most) two pieces of fp1 and fy 2, for all b € B,
that may contribute to the function H(A +¢, B). This requires Tsore(m+mn,p) + T2, (n,1,p)
time, and the function Hpg has O(A(n, 3)) pieces. The function Hg(t) has a similar relationship

with H*(B, A + t) as that between H4 and H*(A + t, B).

4. Compute the function H(A + t, B), which is the upper envelope of the functions H4 and Hp.
This step can be performed by a merge-like operation of the pieces of H4 and those of Hp in
Tsort(A(m,3) + A(n,3), p) time, followed by a parallel prefix operation to combine adjacent
pieces with the same function description into a single piece, in

A(m,3) + A(n,3)

p
O(T¢ny(m, 1,p) + Tg,,(n,1,p))

O( ) + Tsort(p®,p) = (by Theorem 3.3)

time. By Lemma 3.10, the function H(A + t, B) has O(A(m,3) + A(n,3)) pieces.

It follows from our definition of T},

(n, k,p) that the time required by our algorithm is

™ 3

O[)\()\(p ),2)logm + )\()\(g,S)ﬂ)logn + Tsort(A(m,3) + A(n,3),p)]- N

We now prove the main result of this section.
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Theorem 4.7 Let AUB C R, |A] = m, and |B| = n. Then a translation t of A that minimizes
the Hausdorff distance H(A + t, B) may be described on a CGMY,,, (m + n,1,p) in

O[/\(/\(%,3),2) logm + A(A(%,?)),Q)logn + Toore(A\m,3) + A(n,3),p)]
time.

Proof: We give the following algorithm.

1. Translate A by
t() = b1 — a

to A = A+t = {aj+to|i=1,...,m}. Let aj = a;+1to, i =1,...,m. Note that

ay = b;. This is done as follows.

e Broadcast the values of a; and by to all processors. This requires O(p) time.
e In parallel, all processors compute ty. This takes ©(1) time.

e In parallel, every processor adds tg to each of its members of A to obtain the corresponding

members of A’. This requires ©(7}) time.

2. Compute a description of the function H(A' + ¢, B) via the algorithm of Proposition 4.6. This

takes
0[)\()\(%,3)72) logm + /\(/\(%,3),2) logn + Tsore(A(m,3) + A(n,3),p)]
time, and there are O(A(m, 3) + A(n, 3)) pieces.

3. In parallel, every processor computes the minimum value attained by each of its pieces of
H(A' +1t, B) and notes the value of ¢ that yields the minimum value for the piece. Since every

piece is a linear function on an interval, it takes ©(1) time to determine the minimum value

A(m,3)+A(n,3) )

ime.
> time

of a piece of H(A' +t, B). Hence, this step requires O(

4. Let t; be a value of ¢ that yields a minimum value for the function H(A' + ¢, B). The value
of t; is determined by performing a minimum operation on the piecewise minima determined

in the previous step. By Proposition 2.3, this takes O(M) + Tsort(p?,p) time.
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5. A translation parameter ¢, such that
H(A+ty,B) = min{H(A+1t,B) |t€ R'}

is now obtained via t = to+t%;. Since all processors have the values of tg and ¢, all processors

compute t2 in O(1) time.
Thus, the time required by our algorithm is

O[/\(/\(%,Z’)),Z)logm + /\(/\(%,3),2)10gn + Tyore(A(m,3) + A(n,3),p)]. W

5 Common Intersections of Polygons

In [Reic88, B&M90], serial and fine-grained parallel algorithms are given to solve the Common
Intersection Problem for vertically convez polygons (a polygon P is vertically convex if for every pair
of points {z,y} € P, if x and y are on the same vertical line segment s, then s C P). The Common
Intersection Problem is that of determining whether a collection of subsets of the Euclidean plane

R? has a common intersection, and, if so, describing the intersection. We have the following.

Theorem 5.1 Let S be a set of vertically convex polygons in R? whose boundaries have a total of n

line segments. Then the Common Intersection Problem for S can be solved on a CGMY,, (n,1,p) in
O[)‘()‘(% ’ 3)a 2) IOg n + Tsort()\(n, 3),p)] time.

Proof: We assume input to the problem consists of a description of n line segments representing
the boundaries of k vertically convex polygons, Fi,. .., Fy, where 1 < k < n, with each line segment
labeled by the polygon to which it belongs, such that the line segments of the same polygon are

consecutive in the input and are given in circular order. Our algorithm follows.

1. For each Fj, determine a leftmost and a rightmost vertex, I; and r;, respectively. Since the
edges are given in circular order within polygons, associate with each edge of F; the values of
l; and r;. This is done via parallel prefix operations in 9(%) + Tyort(p?,p) time.

2. Use l; and r; to determine the upper and lower boundaries U; and L; of F;. Each of U; and L;
is a connected union of edges of F; that forms a path from [; to r;. Since the edges of F; are
in circular order, this may be done in ©(2) + T,om¢(p?, p) time via parallel prefix operations.

n
p
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3. Compute a description of the lower envelope function f(t) of the edges in U¥_,U; and a de-
scription of the upper envelope function g(t) of the edges in U¥_; L. By Theorem 3.7, this
takes T . (n,1,p) time, and by Theorem 3.5, each of these envelope functions has O(\(n, 3))

env

pieces.

4. A point (to,y) € NE_, F; if and only if (o,y) is below (or on) the graph of f(t) and above (or
on) the graph of g(t), with
B <t <C, (3)

where B and C are the abscissas of the rightmost of {/;}¥_, and the leftmost of {r;}t_,

respectively. We determine whether such a point exists, as follows.

e Compute a description of the function f(t) — g(t). This may be done by a merge-like
operation on the pieces of f and the pieces of g, in Tsort(A(n,3), p) time. By Lemma 3.10,
f(t) — g(t) has O(A(n,3)) pieces.

e Compute each of B and C. This may be done in O(%) + Tsort(p?,p) time via semigroup
operations. At the end of this step, every processor has the values of B and C.

e Examine the O(A(n,3)) pieces of f(t) — g(t) to see if there is a piece that attains a
nonnegative value at some ¢, satisfying inequalities (3). Since f(t)—g(t) has linear pieces,
it takes ©(1) time for a processor to examine one piece. Hence, each processor examines
its share of the pieces in O(@) time. A description of the common intersection points
may be obtained by noting, on each piece of f(t) — g(t), the subinterval J of the piece
satisfying
(a) t € J implies B <t < C, and

(b) t € J implies f(t) — g(t) > 0.
It follows from Lemma 3.2 and our definition of T4, (n, k, p) that the time our algorithm requires is

O[A(A(g,:ﬂ),m logn + Taore(A(n,3),p)]. W

Next, we give a slight generalization of Theorem 5.1 that may be used to solve the Common

Intersection Problem for planar figures with curved boundaries, e.g., circular disks or figures whose
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boundaries are graphs of polynomial functions. The proof is not given, as it is virtually identical

with that given for Theorem 5.1.

Theorem 5.2 Let k,m,n be integers, 0 < k <n. Let fi,..., fm be real-valued functions of a real

variable such that
e cach f; has a ©(1) storage description;
e cach value f;(x) may be computed in ©(1) time by a single processor; and

e for i # j, there are at most k distinct real solutions to the equation f;(x) = f;(x), all of which

can be found by a single processor in ©(1) time.

Let S be a set of vertically convex subsets of R? such that the union of the boundaries of members
of S is the union of n pieces of the graphs y = fi(x), i € {1,...,m}. Then the intersection of the
members of S may be described on a CGMY

EeENnv

(n,k,p) in
mMM%$+2Lk+Dbyl+T@%Mmk+ﬂmﬂ

time. A

6 Dynamic Computational Geometry

Problems concerning geometric properties of moving point-objects were considered in [Atal85a,
B&M89a, B&M89b]. Sequential algorithms are presented in [Atal85a], while fine-grained parallel
algorithms are presented in [B&M89a, B&M89b].

We have obtained efficient scaleable parallel algorithms for many of the problems discussed in the
papers cited above. All have running times dominated by description of lower or upper envelopes
and data movements of an envelope’s pieces. In this section, we assume that k is a fixed positive
integer, and that S = {so,51,.-.,5,_1} is a set of point-objects moving in the Euclidean space R?

so that for each s; € S, the location of s; at time ¢ is described by a vector-valued function

fi(t) = [fi (), fA1)],

such that each Cartesian coordinate function fij is a polynomial in ¢ of degree at most k. We refer

to such motion as k—motion [B&M89a).

24



6.1 Nearest Neighbor

We have the following.

Theorem 6.1 Let d and k be fized positive integers. Let S be a system of n point-objects, each of
which is in k—motion in RY. Then, as a function of t, a nearest member of S\ {so} to so may be

described in Teny(n, 2k, p) time on a CG M.y, (n, 2k, p).
Proof: For j € {1,2,...,n— 1}, let

d;(t) = d(f(t),;(t)),

where d indicates the Euclidean distance function. Note [d;(¢)]? is a polynomial of degree at most 2k.

Since
d;j(t) = min{d,(t),...,d, 1(t)} if and only if [dj(t)]2 = min{[dl(t)]Z, e [dn,l(t)]Q},

it follows that the problem reduces to describing LE({[dy (t)]?, ..., [dn—1(t)]*}). The assertion follows
from Theorem 3.7. W

6.2 Containment in an Iso-Oriented Hyperrectangle

We have the following.

Theorem 6.2 Let d and k be fized positive integers. Let X4, ..., X be fixed positive numbers. Let
S be a system of point-objects, each of which is in k—motion in R®. Then, as a function of t,

the time intervals when an iso-oriented hyperrectangle of dimensions X1,..., X4 contains S may be
determined in O[A(A(%, k), k +1)logn + Tsore(A(n, k),p)] time on & CGMeny(n, k,p).

Proof: We give the following algorithm.

1. For j =1,...,d, let fij (t) be the jt* coordinate function of f;(t). Compute descriptions of all

the functions
m;(t) = min{f§(¢),.... fi_1 ()},
and

M;(t) = max{f§(®), ..., fi_1(®)},
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j=1,...,d. It follows from Theorem 3.7 that all can be described in Tepy(n, k, p) time.

2. For j =1,...,d, describe all the functions
Dj(t) = Mj(t)—m]‘(t),j =1,...,d

Since each of the functions M; and m; has O(A(n, k)) pieces, this step can be done by merging
the pieces of M; and those of m; in Tsore(A(n, k), p) time (Proposition 2.5). Note D; has
O(X(n, k)) pieces, by Lemma, 3.10.

3. For j =1,...,d, describe all the functions
w;(t) = Dj(t) — Xj,

as follows. Broadcast the values of X;, ..., X to all processors in O(p) time. Then, in
O(@) time, each processor sequentially computes the appropriate difference in each of its

pieces of the members of {D;(¢),...,Da(t)}.

4. For j =1,...,d, describe all the functions

a1 ifw(t) <0
Wi(t) = { 0 otherwise.

Each piece of w; generates at most k + 1 constant-valued pieces of W; in ©(1) serial time;

hence W; has O(A(n, k)) constant-valued pieces. This step requires O(@) time.

5. Now describe the product function 7 (t) of {W1,...Wy}. As above, this function has O(A(n, k))
pieces and may be described in Tyort(A(n, k), p) time via [logd] = ©(1) merge-like steps,
starting at the lowest level with the pieces of pairs of {Wi,...,Wy}. We note that S is
contained in an iso-oriented hyperrectangle of the specified dimensions precisely during those

intervals of time corresponding to pieces of © when 7(¢) = 1.

The assertion follows from Lemma 3.2 and the definition of Tepy(n, k,p). B
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6.3 Smallest Containing Hypercube

A problem related to that discussed in Section 6.2 is the description, as a function of time, of the
edgelength of the smallest rectilinear, iso-oriented hypercube that contains S at time ¢. Here, by

“hypercube” we mean a hyperrectangle in which all edges have the same size. We have the following.

Theorem 6.3 Let d and k be fized positive integers. Let S be a system of point-objects, each of
which is in k—motion in R%. Then the function E(t), the edgelength of the smallest rectilinear,

iso-oriented hypercube that contains S at time t, can be described in
OPAC, K). b+ 1)logn + Toore(A(n, k), p)]
time on a CGMeny(n, k,p).
Proof: We give the following algorithm.

1. Compute descriptions of all the functions Dy (t), . .., D4(t) that represent the edgelengths of the
smallest iso-oriented hyperrectangle that contains S. As described in the proof of Theorem 6.2,
the union of the pieces of these functions has a cardinality of O(A(n, k)), and this step may be

performed in O[A(A(%,k),k +1)logn + Tsore(A(n, k), p)] time on a CGMeny(n, k, p).

2. Note E(t) = max{Dy(t),...,Dq(t)}. Therefore, a description of E(t) may now be computed
by [logd] = ©(1) merge-like steps, starting at the lowest level with the pieces of pairs of
{D1,...,Dq}. This step may be performed in Tort(A(n, k), p) time.

The assertion follows. B

6.4 Vertex of Convex Hull

The convez hull of a set of points S = {P,..., P,}, denoted hull(S), is the smallest convex set
containing S. A point P; € S is an extreme point or vertex of hull(S) if P; & hull(S\ {P;}). In
this section, we develop a CG M algorithm for determining when a given point P; € S is an extreme
point of hull(S), where S is a set of point objects in k—motion in R2. In doing so, we use some

results of [Atal85a, B&M89a).
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Let T;;(t) be the angle made by rotating the positively oriented horizontal ray with endpoint
P; about P; until the ray contains the line segment from P; to P; at time ¢{. By convention,
—7n < Tj;(t) < m. Formally, if z;(t), z;(t),y:(t), and y;(t) are the z and y coordinates of the points
P; and Pj, respectively, at time ¢, then

(/2 if z;(t) = z;(t) and y;(t) < y;(t);
—m/2 if z;(t) = z;(t) and y;(t) > y;(t);
arctan (%) if z;(t) < z;(t);
T;i(t) = < j —y; .
i (t) arctan (%) + 7 if z;(t) > z;(t) and y;(t) < y;(t);
arctan (%) —n if zi(t) > x;(t) and y;(t) > y;(t);
| undefined if z;(t) = z;(t) and y;(t) = y;(t)

Define G;(t) = { undefined otherwise.

T; (t) if Tij (t) < 0;

Define B;;(t) = { undefined otherwise.

Define the functions a;, b;, ¢;, and d; as follows.
a;(t) = min{G;;(t) | 0 < j <mn, i #j, G;;(t) is defined}.
bi(t) = max{G;;(t) | 0 < j <mn, i #j, Gi(t) is defined}.
¢i(t) =min{B;;(t) | 0 < j < n, i # j, B;;(t) is defined}.
d;(t) = max{B;;(t) | 0 < j <m, i # j, B;;(t) is defined}.

If at time ¢, G;;(t) is undefined (respectively, B;;(t) is undefined) for all j, then a;(t) and b;(t)
(respectively, ¢;(t) and d;(t)) are undefined.

Lemma 6.4 [B&M89a], proof of Lemma 4.4: Let S be a set of n point-objects that are in k—motion,

for some positive integer k, and let H : R* — R' be any of the functions in
{Gz'j, Hz'j | 0S7:<TL, OSj<7’L, Z;éj}

described above. Let q be the number of jump discontinuities of H and let r be the number of

transitions of H. Then g +r < k. B
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Define T = {T;; | j#1i, 0<j<n}

Lemma 6.5 [Atal85a, B&M89a] For a system of n point-objects in the Euclidean plane with k-

motion, each of the functions a;,b;, c;, and d; has at most A\(n,4k) pieces generated by T'. B

Lemma 6.6 [Atal85a] Given a set S of n point-objects in the plane with k—motion, a point P; is
an extreme point of hull(S) at time t if and only if

1. a;(t) — di(t) > m, or
2. bz(t) — Ci(t) <m, or
3. a;(t) and b;(t) are undefined, or

4. ¢;(t) and d;(t) are undefined. B

The reader may find Figure 1 helpful in understanding Lemma 6.6.
In the following theorem, we give an algorithm to determine the intervals of time over which a
given point P; € S = {F,...,Py_1} is an extreme point of hull(S). We will again assume that the

roots of a polynomial of bounded degree can be determined in ©(1) time.

Theorem 6.7 Let S = {Py,...,Pn_1} be a set of points in the plane with k-motion. Then the or-
dered intervals of time during which a given point P; is an extreme point of hull(S) can be determined

in O[AA(2,4k), 4k + 1)logn + Tsort(A(n,4k),p)] time on a CG My, (n,4k,p).
p

Proof: Observe that solving T;;(t) = Tj,(t) means finding instants at which the directed line
segment from P; to P; and the directed line segment from P; to P, are parallel and similarly

oriented. Finding instants when the line segments are parallel requires solving the equation

[w; () = i) [2m () = 2:())] = [ym (8) — i (8)] [2;(2) — 2i(D)] (4)

which is a polynomial equation of degree at most 2k. We assume such equations can be solved in
©(1) time by a single PE. Further, determining whether or not two parallel directed line segments
are similarly oriented can be accomplished in ©(1) serial time. It follows that T;;(t) = Tim(t) can

be solved by a single processor in ©(1) time.
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Case1: & -di> T1 Case2: bj-ci< TT

Case 3: a, and bi Case 4: ciand di

undefined undefined

Figure 1: Extreme points of the convex hull.
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By Lemma 6.4, each G;; (similarly, each B;;) has at most k values of ¢ that yield jump discontinu-
ities or transitions. It follows from Theorem 3.9 that we can construct the functions a;(t), b;(t), ¢;(t),
and d;(t) in Teny (n, 4k, p) time. It follows from Lemma 6.5 and Lemma 3.10 that each of a;(t) —d;(t)
and b;(t) —¢;(t) has O(A(n,4k)) pieces generated by differences of members of T'. The ordered pieces
of the functions a;(t) — d;(t) and b;(t) —¢;(t) are now constructed in Tsye(A(n,4k), p) time by merge-
like operations. Similarly, ordered maximal intervals on which a;(t) and b;(t) are both undefined
(respectively, on which ¢;(t) and d;(t) are both undefined) are determined in T,,,(n, 4k, p) time.

Define
. . 1 if a,-(t) — dz(t) Z ™
Ait) = { 0 otherwise

a1 if () —es(t) <7
Bi(t) { 0 otherwise.

and

Observe that if I; and I, are intervals of pieces of a; and d;, respectively, where I = I; N I is
nondegenerate, then a;|r(t) — d;|1(t) = = implies there are integers j and m determined by I; and
I, respectively, such that a;|r = Tjj, di|r = Tim, and T;;(t) — Tim(t) = 7. Solving the latter means
finding instants at which the directed line segment from P; to P; and the directed line segment from
P; to P, are parallel and oppositely oriented. We noted above that finding instants when the line
segments are parallel may be accomplished in ©(1) serial time, and that there are at most 2k such
instants. Determining whether or not two parallel directed line segments are oppositely oriented may
also be done in ©(1) serial time. Every piece of a;(t) — d;(t) generated by differences of members of
T yields at most 2k + 1 pieces of A;(t) generated by the set of constant functions {0,1}. It follows
from Lemma 3.11 that A4;(¢) has at most (2k+1) 2 A\(n, 4k) = O(A(n, 4k)) pieces generated by {0, 1}.
Similarly, B;(t) has O(\(n,4k)) pieces generated by {0,1}. The functions A;(¢) and B;(t) may be
constructed in Tyor:(A(n,4k), p) additional time, using merge-like operations.

Similarly, in Tsert(A(n,4k), p) time we can construct the O(A(n,4k)) ordered pieces generated by
{0,1} of

Ci(t) = 1 if both a;(t) and b;(t) are undefined
7771 0 otherwise
and
Di(t) = 1 if both ¢;(t) and d;(t) are undefined
Y771 0 otherwise.
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It follows from Lemma 3.11 that there are O(A(n,4k)) pieces generated by {0, 1} of
H;(t) = max{A;(t), Bi(t), Ci(t), Di(t)},

which now may be determined in Tyt (A(n,4k), p) additional time by merge-like operations. Since
Lemma 6.6 implies P; is an extreme point at time ¢ if and only if H;(t) = 1, the algorithm is complete.
The running time of the algorithm is Tepy(n,4k,p) + Tsort(A(n,4k), p), which, by Lemma 3.2 and
the definition of Teny, is O[A(A(3,4k),4k + 1)logn + Tsore(A(n,4k),p)]. M

7 Further remarks
7.1 Summary

In this paper, we have given an efficient scaleable parallel algorithm for describing the lower envelope
function for a set of polynomials of bounded degree. We have used this algorithm to obtain efficient
solutions to a variety of related geometric problems.

As far as we know, our algorithms are in all cases the first scaleable parallel algorithms given in

solution to their respective problems.
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