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Abstract

A new computational framework is developed for the evolutionary determination of molec-
ular crystal structures using the Shake-and-Bake methodology. Genetic algorithms are per-
formed on the SnB results of known structures in order to optimize critical parameters of
the SnB computer program. The determination of efficient SnB input parameters can signifi-
cantly reduce the time required to solve unknown molecular structures. Further, the grid-
enabled data mining approach that we introduce exploits computational cycles that would
otherwise go unused.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The ACDC-Grid [1-5] is a proof-of-concept grid that has been implemented in
Western New York. The driving application provides a cost-effective solution to
the problem of determining molecular structures from X-ray crystallographic data
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via the Shake-and-Bake direct methods procedure. SnB [6], a computer program
based on the Shake-and-Bake method [7,8], is the program of choice for solving such
structures in numerous laboratories [9-11]. This computationally-intensive proce-
dure can exploit the grid’s ability to present the user with a computational infrastruc-
ture that will allow for the processing of a large number of related molecular trial
structures [12,13].

SnB has been used in a routine fashion to solve difficult atomic resolution struc-
tures, containing as many as 1000 unique non-Hydrogen atoms, which could not be
solved by traditional reciprocal-space routines. Recently, the Shake-and-Bake re-
search team has extended the application of SnB to solve heavy-atom and anoma-
lous-scattering substructures of much larger proteins, provided that 3-4A
diffraction data can be measured. In fact, while direct methods had been applied suc-
cessfully to substructures containing on the order of a dozen selenium sites, SnB has
been used to determine as many as 180 selenium sites. Such solutions have led to the
determination of complete structures containing hundreds of thousands of atoms.

As shown in Fig. 1, X-ray data and the corresponding molecular structure are re-
lated by a Fourier transform. The X-ray data that is collected typically consists of
positions and intensities. However, the corresponding phases are lost in the data col-
lection process. Given positions, intensities, and phases, a Fourier transform can be
used to generate the positions of the atoms in the molecule. Therefore, the solution
to the problem of determining structures from X-ray data is referred to as the phase
problem. That is, once the phases are determined, the positions of the atoms for the
structure in question are easily derived.

The Shake-and-Bake procedure consists of generating structure invariants and
coordinates for a (large) set of randomly generated “trial” structures. Each such trial
structure is subjected to an automated cyclical procedure (refer to Fig. 2) between
real space (where atoms live) and reciprocal space (where phases live). The Shake-
and-Bake procedure includes (a) computing a Fourier Transform to determine phase
values from the existing set of atoms, (b) determining a figure-of-merit [14] associ-
ated with these phases, (c) refining these phases locally against this figure-of-merit,
(d) computing a Fourier Transform to produce an electron density map, and (e)
employing a peak-picking routine to examine the map and find the maxima. These
peaks (maxima) are then considered to be atoms, and the cyclical process is repeated
for a user-determined number of cycles.
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Fig. 1. X-ray data and corresponding molecular structure.
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Fig. 2. Shake-and-Bake cyclic peak-picking procedure.

The procedure has a philosophy of “run until solved” in that one trial structure
after another is subjected to the cyclical procedure until the figure-of-merit deter-
mines that one of these initially random trial structures has morphed into the correct
structure. In practice, the random trial structures are generated on the fly, either
sequentially or in parallel, as is appropriate for the computing platform that is being
used.

The running time of SnB varies widely as a function of the size of the structure,
the quality of the data, the space group, and choices of critical input parameters,
including the size of the Fourier grid, the number of reflections, the number and type
of invariants, the number of cycles of the procedure used per trial structure, and crit-
ical real-space and reciprocal space refinement methods, to name a few. Therefore,
the running time of the procedure can range from seconds or minutes on a PC to
weeks or months on a supercomputer. Trial structures are continually and simulta-
neously processed, with the final figure-of-merit values of all structures stored in a
file. The user can review a dynamic histogram during the processing of the trials
in order to determine whether or not a solution is likely present in the set of
completed trial structures.

2. Genetic algorithms

Genetic Algorithms (GAs) were developed by Holland [15] and are based on nat-
ural selection and population genetics. Traditional optimization methods focus on
developing a solution from a single trial, whereas genetic algorithms operate with
a population of candidate solutions.

We propose to use a GA to determine an efficient set of SnB input parameters in
an effort to reduce the time-to-solution for determining a molecular crystal structure
from X-ray diffraction data. We use a population of candidate SnB input parame-
ters. Each member of the population is represented as a string in the population
and a fitness function is used to assign a fitness (quality) value for each member.
The members in the population obtain their fitness values by executing the SnB
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program with the input parameter values represented by their strings. Using “survival-
of-the-fittest” selection, strings from the old population are used to create a new pop-
ulation based on their fitness values. The member strings selected can recombine
using crossover and/or mutation operators. A crossover operator creates a new
member by exchanging substrings between two candidate members, whereas a muta-
tion operator randomly modifies a piece of an existing candidate. This procedure of
combining and randomly perturbing member strings has, in many cases, been shown
to produce stronger (i.e., more fit) populations as a function of time (i.e., number of
generations).

Sugal [16] (sequential execution) and PGAPack [17,18] (parallel and sequential
execution) genetic algorithm libraries were used in our work. The Sugal library pro-
vided a sequential GA and has additional capabilities, including a restart function
that proved to be very important when determining fitness values for large molecular
structures. The PGAPack library provided a parallel master/slave MPICH/MPI
implementation that proved very efficient on distributed- and shared-memory
ACDC-Grid compute platforms. Other key features include C and Fortran inter-
faces, binary-, integer-, real-, and character-valued native data types, object-oriented
design, and multiple choices for GA operators and parameters. In addition, PGA-
Pack is quite extensible. The PGAPack library was extended to include restart func-
tionality and is currently the only library used for the ACDC-Grid production work.

3. SnB input parameters

The SnB computer program has approximately 100 input parameters, though not
all parameters can be optimized. For the purpose of this study, 17 parameters were
identified for participation in the optimization procedure. The SnB parameter names
and brief descriptions follow.

1. NUM_REF: number of reflections used for invariant generation and phase
determination.

2. RESO_MAX: minimum data resolution.

E_SIG_CUT: E/Sigma(E) > Cut.

4. NUM_INV: number of three-phase invariants to generate and utilize during the
Shake-and-Bake procedure.

5. NUM_CYCLE: number of Shake-and-Bake cycles performed on every trial
structure.

6. PH_REFINE_METHOD: fast parameter shift, slow parameter shift, tangent
formula method.

7. PS_INIT_SHIFT: parameter shift angle in degrees.

PS_NUM_SHIFT: maximum number of angular shift steps.

9. PS_NUML_ITER: maximum number of parameter shift passes through phase
list.

10. TAN_NUM_ITER: maximum number of passes through phase list when
PH_REFINE_METHOD is set to tangent formula method.
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11. MIN_MAP_RESO: Fourier grid map resolution.

12. NUM_PEAKS_TO_OMIT: number of peaks to omit.

13. INTERPOLATE: a Boolean value that specifies whether or not to interpolate
the density map.

14. Cl: cycle 1 start.

15. C2: cycle 2 end.

16. P1: number of peaks to pick.

17. P2: number of heavy atom peaks to pick.

Eight known molecular structures were initially used to evaluate the genetic algo-
rithm evolutionary molecular structure determination framework performance.
These structures are 96016¢ [19], 96064c [20], crambin [21], Gramicidin A [22],
Isoleucinomycin [23], pr435 [24], Triclinic Lysozyme [25], and Triclinic Vancomycin
[26].

In order to efficiently utilize the computational resources of the ACDC-Grid,
an accurate estimate must be made in terms of the resource requirements for SnB
jobs that are necessary for the GA optimization. This includes runs with varying
parameter sets over the complete set of eight known structures from our initial
database.

This was accomplished as follows. First, a small number of jobs were run in
order to determine the required running time for each of the necessary jobs.
Typically, this consisted of running a single trial for each of the jobs in order to
predict the time required for the required number of trials for the job under
consideration.

Approximately 25,000 population members were evaluated for the eight known
molecular structures and stored in a MySQL [27] database table (evo_results).
PhpMyAdmin [28] is a tool written in PHP for administration and use of MySQL
over the web. The phpMyAdmin interface was used to display the evo_results data-
base table, as shown in Fig. 3.
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Fig. 3. MySQL database table for SnB trial results.
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Fig. 4. Standard scores for Pearson product-moment correlation coefficient calculations.

From these trial results, the mean ()_(j) and standard deviations (s') were calcu-
lated for each input parameter j and used to determine the standard scores (z/) for
each trial i,

X —x

s/

P ——
for all i and j where the trial parameter value for trial i and parameter j is X7. Fig. 4
shows the standard scores of the parameters under consideration.

The Pearson product-moment correlation coefficients (#}) are calculated for input
parameter j and molecular structure k by

r;; _ Zzizlr{untime 7

N -1
for all j and k, where N denotes the degrees of freedom and z""i™ represents the
standard score of the GA trial run time. Refer to Fig. 5.

The input parameters that have the largest absolute magnitude Pearson product—
moment correlation coefficient with respect to the observed trial run times are se-
lected and used to form a predictive run time function that is fit using a linear least
squares routine

runtime __ § iy
Xi = ajl"]](X,

where the observed X™™ trial run time is fit to a selected sub-set of input para-
meter values j, X’ denotes the input parameter value, r, denotes the respective molec-
ular structure k& Pearson product-moment correlation coefficient, and a; denotes the
linear least square fit coefficients for each j input parameter. We use this function
within the grid-enabled data-mining infrastructure to estimate the maximum number
of SnB GA generations and the maximum size of the population that would run on a
given computational resource within the specified time frame.
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Fig. 5. Pearson product-moment correlation coefficient database table.

The ACDC-Grid infrastructure automatically updates the correlation coefficients
based on the availability of new trial data appearing in the SrB trial result table.
Thus, run time estimates for any given structure continually evolve throughout the
GA optimization process.

For example, if there are 50 processors available for 150 minutes on ACDC-Grid
compute platform “A”, we are interested in determining the maximum number of
GA generations and the size of the population that can run on “A’ and complete
within 150min. Based on this information, the data mining algorithms can make
intelligent choices of not only which structures to evaluate, but they can completely
define the SnB GA job that should be executed. This type of run time prediction is an
essential component of our system for providing a level of quality of service. Further,
in our experience, this type of run time parameter-based prediction is almost always
necessary when queue managed computational resources are employed.

4. Shake-and-Bake grid-enabled data mining

The SnB grid-enabled data mining application utilizes the ACDC-Grid infrastruc-
ture and web portal, as shown in Fig. 6.

A typical SnB job uses the Grid Portal to supply the molecular structures para-
meter sets to optimize, the data file metadata, the grid-enabled SnB mode of opera-
tion (dedicated or back fill), and the SnB termination criteria. This information can
be provided via the point and click web portal interface or by specifying a batch
script, as shown in Fig. 7.

The database job script can accept command line arguments and can be activated
or de-activated at any time by adjusting the database job grid portal parameters. A
fully configurable time interval is used by the grid portal to execute some or all of the
configured database jobs (normally this time interval is set to 10 min).
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Fig. 7. The ACDC-Grid web portal database job interface.

The Grid Portal then assembles the required SnB application data and supporting
files, execution scripts, database tables, and submits jobs for parameter optimization
based on the current database statistics. ACDC-Grid job management automatically
determines the appropriate execution times, number of trials, number of processors
for each available resource, as well as logging and status of all concurrently executing
resource jobs. In addition, it automatically incorporates the SnB trial results into the
molecular structure database, and initiates post-processing of the updated database
for subsequent job submissions. Fig. 8 shows the logical relationship for the SnB
grid-enabled data mining routine described.

For example, starting September 8, 2003, a backfill data mining SnB job was acti-
vated at the Center for Computational Research using the ACDC-Grid computa-
tional and data grid resources. The ACDC-Grid historical job-monitoring
infrastructure is used to obtain the jobs completed for the period of September 8,
2003 to January 10, 2004, as shown in Fig. 9.
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Fig. 8. ACDC-Grid grid-enabled data mining diagram.
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Fig. 9. ACDC-Grid job monitoring information for all resources and users.
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Fig. 10. ACDC-Grid job monitoring statistics for user mlgreen.
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The activated data mining SnB job template is being run by user mlgreen. By hov-
ering over the bar in the chart, as shown in Fig. 10, one can see mlgreen’s job statis-
tics. Further, notice that 3118 jobs have been completed on the ACDC-Grid
resources over this time period. The ACDC-Grid job monitoring also dynamically
reports job statistics for the data mining jobs. The total number of jobs completed
by all users on all resource is 19,868 where the data mining jobs represent 15.69%
of the total. The average number of processes for a data-mining job was 19.65
and the total number of processors used over this period was 433,552, where the data
mining jobs accounted for 16.85% of the total. The data mining jobs consumed
291,987 CPU hours, which was 19.54% of the total CPU hours consumed
(1,494,352 CPU hours).

A subsequent mouse click on the bar chart provides additional information char-
acterizing in more detail the jobs completed by user mlgreen. Here, we see five com-
putational resources that processed the 3118 data mining jobs. The statistics for the
Joplin compute platform are shown in Fig. 11. Note that all statistics are based only
on the jobs completed by the mlgreen user. There were 869 jobs processed by the
Joplin compute platform representing 27.87% of the 3118 data mining jobs.

Clicking on the bar chart drills down into a full description of all jobs processed
by the Joplin compute platform, as shown in Fig. 12. The information presented in-
cludes job ID, username, group name, queue name, node count, processes per node,
queue wait time, wall time used, wall time requested, wall time efficiency, CPU time,
physical memory used, virtual memory used, and job completion time/date.

The ACDC-Grid data mining backfill mode of operation only uses computational
resources that are currently not scheduled for use by the native queue scheduler.
These resources are commonly referred to as “backfill jobs,” as users can run jobs
on the associated nodes without affecting the queued jobs. Many queues and schedu-
lers give this information in terms of the number of nodes available and the time for
which the nodes are available. The ACDC-Grid infrastructure monitors this infor-

=]

Fig. 11. ACDC-Grid job monitoring statistics for user mlgreen.
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Fig. 13. ACDC-Grid backfill information for all resources.

mation for all of the computational resources and stores this information in a
MySQL database table, as shown in Fig. 13.

Fig. 13 also shows the number of processors and wall time that are available for
each resource. Note that a value of —1 for the available wall time represents an
unlimited amount of time (no currently queued job require the use of these proces-
sors). The activated data mining template can obtain the number of processors and
wall time available for a given compute platform and then check the status of the
platform before determining the actual GA SnB data mining job parameters (see
Figs. 14 and 15).

Using the Pearson product-moment fit function derived earlier, the new data

mining job run time is estimated based on the current ACDC-Grid SrB molecular
structure database information.
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Fig. 15. ACDC-Grid data grid and computational grid integration.

Once the computational aspects of the data-mining job have been defined, the
location of the required data files is determined by querying the ACDC-Grid Data
Grid database. The ACDC-Grid Data Grid denotes a large network of distributed
storage resources such as archival systems, Storage Area Networks, Network At-
tached Storage, and databases, which are linked logically creating global and persist-
ent disk storage that can be accessed by all computational resources (refer to Fig.
15).

The data grid is designed to provide transparent management of data distributed
across heterogeneous resources, such that the data is accessible via a uniform web
interface and directly through a well-defined API. In addition, the data grid infra-
structure enables the transparent migration of data between various resources while
maintaining metadata information about each file and its location via a global data-
base table. The system periodically migrates files between machines based on user
patterns in order to achieve an efficient usage of resources.

The implementations of basic file management functions accessible via a plat-
form-independent web interface provide the following features.



M.L. Green, R. Miller | Parallel Computing 30 (2004) 1057-1071 1069

— User-friendly menus/interface.

— File Upload/Download to and from the Data Grid Portal.

— Simple web-based file editor.

— Efficient search utility.

— Logical display of files for a given user in three divisions (user/ group/ public).
e Hierarchical.
e List-based.
e Three divisions: (user/ group/ public).
e Sorting capability based on file metadata, i.e. filename, size, modification time,

etc.

— Support multiple accesses to files in the data grid (file locking and synchronization

primitives for version control).

Integrated security procedures allow authentication and authorization of users
for data grid file access and enforce policies for data access and publishing. The
gathering and display of statistical information on the data grid usage is automat-
ically obtained through the data grid infrastructure. This information is particularly
useful to administrators for optimizing the usage of resources. The data mining job
template is then executed, leading to the migration and submission of the designed
data-mining job and data files to the respective ACDC-Grid computational
resource.

The activated data-mining template has two options of stopping criteria.

1. Continue submitting SnB data-mining application jobs until the optimal para-
meters have been found based on predetermined criteria.

2. Continue indefinitely (the data mining template is manually de-activated by the
user when optimal parameters are found).

This illustrative example summarizes the evolutionary molecular structure deter-
mination optimization of the Shake-and-Bake method as instantiated in the SuB
computer program.

5. Further remarks

The evolutionary strategy presented in this paper was used to substantially im-
prove the performance of the SuB procedure. The GA procedure that we described
improved the time-to-solution of SnB by up to a factor of two on a number of rep-
resentative data sets.

Many scientific applications can take advantage of an evolutionary procedure in
an effort to optimize its input parameters. We have identified several such applica-
tions and are currently generalizing the grid-enabled data mining procedure as a
grid-enabling application template.

We are currently working on several related projects, including enhancing
the ACDC-Grid infrastructure to include predictive scheduling, intelligent data
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migration over several large data repositories, and lightweight hierarchical grid mon-
itoring tools.
We plan to package and distribute much of this work in the near future.
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