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The literature of computational geometry contains many papers concerned with exact solutions to
problems involving geometric data. However, real-world problems generally have data with mea-
surement errors; further, computations required for solutions may have truncation and/or roundoff
errors. It is therefore desirable to develop efficient solutions that can accommodate such errors.

Allowing for an error tolerance may have a profound effect on the nature of the solution, as is seen
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Abstract

Spatial regularity amidst a seemingly chaotic image is often meaningful. Many papers in
computational geometry are concerned with detecting some type of regularity via exact solutions
to problems in geometric pattern recognition. However, real-world applications often have data
that is approximate, and may rely on calculations that are approximate. Thus, it is useful to
develop solutions that have an error tolerance.

A solution has recently been presented [7] to the problem of finding all maximal subsets of an
input set in the Euclidean plane R? that are approximately equally-spaced and approximately
collinear. This is a problem that arises in computer vision, military applications, and other
areas. The algorithm of [7] is different in several important respects from the optimal algorithm
given in [3] for the exact version of the problem. The algorithm of [7] seems inherently sequential
and runs in O(n5/2) time, where n is the size of the input set. In this paper, we give parallel
solutions to this problem.
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in the problem that is the subject of this paper.
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We seek to identify all maximal e-regular subsets of a finite input set S C R2. Roughly, a set
is regular if it is collinear and its members are equally-spaced; it is e-regular if it is approximately
regular, within an error tolerance € > 0. Precise definitions are presented in section 2.

An optimal sequential solution to the problem of finding all regular subsets of S was given in
[3]. This algorithm runs in O(n?) time. An efficient parallel solution, using a significantly different
algorithm, was given in [1] (see also [5]).

The e-regular version of the problem requires a different approach. For example, it was shown
in [7] that the worst-case volume of output for this problem is Q(n?logn) and O(n®/2), while for
the regular (exact) version of the problem, the worst-case volume of output is ©(n?). Roughly, this
is due to the fact that a pair of points appears in at most one maximal regular subset of S, but
may occur in many é-regular maximal subsets (see Figure 4 of [7] for an illustration). The O(n®/2)
running time of the algorithm presented in [7] is linear in the volume of a set of intermediate results,
the so-called “p-initiated sequences.” The upper bound on the volume of p-initiated sequences is an
upper bound (possibly not tight) on the output of the algorithm.

In this paper, we give a parallel solution to the problem discussed above. Our solution runs on
the CREW PRAM in O(nlogn) time using n? processors and O(n®/?) memory. This yields a cost
of O(n®logn), which seems inefficient compared to the result of [7]. Nevertheless, our result is of
interest, as the algorithm of [7] appears inherently sequential, yet its slow (even if optimal) running
time seems to beg for a parallel solution. We also show that our algorithm runs on a mesh of size

O(n®/?) in O(n®/*logn) time, which is within a factor of logn of being optimal for this architecture.

2 Preliminaries

In this section, we define the model of computation, as well as the assumptions about the input,
used in this paper. We define terminology, state our problem, and discuss linear programming as a

tool for solving our problem.

2.1 CREW PRAM Model of Computation

A parallel random access machine (PRAM) is a computer with multiple processors that share mem-

ory. The concurrent read, exclusive write (CREW) PRAM, permits multiple processors to read



simultaneously from the same memory location, but does not permit simultaneous writes to the

same memory location.

2.2 Mesh Computer

A 2-dimensional mesh-connected computer (mesh) is a computer with multiple processors organized
as a square lattice of processors. Each generic processor shares a bidirectional communication link
with each adjacent processor in its row and in its column. A mesh of size N has N processors
arranged as an N'/2 x N'/2 lattice.

A mesh of size N has communication diameter ©(N'/2), meaning that the maximum number of
communication links separating any pair of processors in the mesh is ©(N'/2). Therefore, if a prob-
lem on a mesh of size N requires the possibility of two processors that are ©(N'/2) communication
links apart to communicate, and the running time of an algorithm to solve the problem is O(N'/?),

then the algorithm is optimal.

2.3 Terminology

A set of points P in a Euclidean space R® is collinear if there is a line L C R? such that P C L.
A finite set P = {p;}¥_, is equally spaced if the elements of P are indexed such that the vector
difference p;1+1 — p; has constant length for 1 <4 < k. We say P is regular if |P| > 2, P is collinear,
and P is equally-spaced.

We say P = {p; = (%i,y:)}f.; C R? is e-regular if for all i there are points p; = (z!,y!) € R?
such that |z; — x| < ¢, |y; — yl| < ¢, and the set P' = {p,}} | is regular. A mazimal e-regular
sequence is an g-regular sequence that is not properly contained as a contiguous subsequence in any
other e-regular sequence.

It was noted in [7] that these definitions may result in “redundant” sequence detection, in the
sense that, e.g., if (a,b,¢,d,e) is an e-regular sequence, then so is (a,c,e). However, [7] goes on to

point out that

e these definitions, permitting such “redundant” sequences to be considered maximal, do not

raise the asymptotic cost of the algorithm; and



e this approach is consistent with the application of landmine detection, in which false positives

are preferable to false negatives.

2.4 Input Assumptions

Input to our problem consists of a set S of n > 3 points in R?, and a number £ > 0 that serves as

an error tolerance. We will use the following.

Assumption 2.1 The minimal (Euclidean) distance between distinct members of S is greater than

8e.

It was shown in [7] that this assumption, together with the following Lemma, enables us to
conduct binary searches for members of S such that each search either fails or returns a unique

point.

Lemma 2.2 [7] Let (z1,y2) and (z2,y2) be the first two points of an e-regular triple. Then the
third point (x3,ys) of the triple satisfies

2y — x1 — 4e < x3 < 219 — 71 + 4E,

2yp —y1 —4e <y3 <2y, —y; +4c.

2.5 Our problem

The problem we wish to solve may now be stated as follows: Given a set S C R? consisting of n
points and an error tolerance € > 0 satisfying Assumption 2.1, find all maximal e-regular subsets of
S.

It was noted in [7] that Assumption 2.1 precludes the possibility of exponential-sized output.

For example, consider
n/2

S = U{(7’75/2)7 ('La _6/2)}
i=1

for n even. This is a set for which Assumption 2.1 is not valid. Then there are 2*/2 distinct maximal

e-regular subsets of S of the form {ai}?:/f, with a; € {(i,€/2), (i,—€/2)}, each e-approximated by

the regular set {(i, 0)}:;/%



2.6 Linear Programming

Suppose that we have an e-regular sequence (p1,p2,---,Pr) and an e-regular triple containing the
last pair, (px—_1,Pk,Prr1)- It does not automatically follow that (pi,ps,--., Pk, Pry1) is e-regular.
That is, finding a point pgy1 € S such that (pg—1, pr,Pr+1) is an e-regular triple, is a necessary but
insufficient condition to extending (pi1,ps,...,Pr) as an e-regular sequence.

For a sequence (p1,p2, - ..,Pm) to be e-regular, there must be a regular sequence (pi,ph,...,pl,)
such that for each index i, p; and p} are separated in each coordinate by at most . Thus, there are

unknowns dg, dy, p;_, p’ly such that for all ¢ € {1,...,m},
pi, + (i—1ds — e<pi, <pi, + (i—1)d, + ¢,

P, + (-1)dy, —e<pi, <p; + (i—1dy + ¢,

where the z and y subscripts refer, respectively, to the z and y coordinates. As noted in [7], it may
be determined whether or not these conditions are all satisfied by solving a linear programming (LP)

problem in the four unknowns d, dy, p},, pi, -

Theorem 2.3 [4] An LP problem in o fized number of unknowns can be solved in time linear in

the number of constraints. B

Another tool for determining whether a sequence is e-regular is to solve a problem related to

linear programming, that of describing an intersection of half-planes. We have the following.
Theorem 2.4 [6] Given the description of n or fewer half-planes distributed one per processor on
a mesh of size n, their intersection can be computed in ©(n'/?) time. W

3 Our algorithm

We prove the following.

Theorem 3.1 Let S be a set of n points in R? satisfying Assumption 2.1 for a given € > 0. Then

all mazimal e-regular subsets of S may be identified using the following resources:



e O(nlogn) time on a CREW PRAM of n* processors and ©(n5/?) memory.
e O(n®/*logn) time on a mesh of ©(n5/?) processors.

Proof: We remark that in the algorithm that follows, the casual reader may find it strange
that determining whether a sequence is e-regular is faster on the mesh than on the PRAM. This is
explained by the fact that we deploy parallelism differently for these models of computation. Our
PRAM implementation is medium-grained, while our mesh implementation is fine-grained. On the
PRAM, one processor will solve a linear programming problem of non-constant size, while on the
mesh, ©(m) processors will describe the intersection of m half-planes. Thus, the time required by the
PRAM for this portion of the algorithm is the time for a sequential algorithm; but the time required
by the mesh for this portion of the algorithm is the time for a fine-grained parallel algorithm.

For the mesh, we use the snake-like order of processors [6, 5]. Also for the mesh, we assume S
is initially distributed one point per processor in an n'/? x n'/2 block of processors. Our algorithm

follows.

1. Let every processor have the value of €. Since we assume a CR PRAM, every PRAM processor
can read this value in ©(1) time. For the mesh, broadcast the value of ¢ to all processors. This

takes ©(n®/*) time [6, 5].

2. Sort the members of S as in [7]. That is, we conceptually partition the plane into a grid in
which each square has edges of length 8. For each s € S, we compute the coordinates of the
lower left corner of the grid square containing s and store these grid coordinates as part of
a record that also contains the coordinates of s. Sort the members of S with respect to the
lexicographic order of the grid coordinates in ©(logn) time for the PRAM [2]. For the mesh,

sort S in its n'/2 x n!/2 block of processors in ©(n'/?) time [6, 5].

3. For the mesh, we may think of the processors as being partitioned into ©(n3/2) distinct blocks
of n'/? x n!/? processors apiece. Use parallel row and column rotations so that each such block

gets a copy (now sorted) of S. This takes ©(n5/*) time.

4. We can map the processors to ordered pairs of members of the input set S so that each

processor is associated with at most ©(1) such pairs. For the PRAM, this takes ©(1) time,



since we assume the CR property. For the mesh, we can create these pairs by using random
access write operations so that the processor in row ¢ and column j gets the pair (s;,s;),

1<i<n,1<j<n,in On®*) time [6, 5].

5. Associate with each pair created above, a record containing the pair and the count of the

sequence that the pair begins. Initialize the count as 2. This takes ©(1) time.

6. Determine the successor pair (sj,sg) of each pair (s;,s;), if the successor pair exists, where
the pair (s;, sg) is the successor of (s;, s;) if the triple (s;, s, sx) is e-regular. This is done as

follows.

e Compute the grid coordinates of the desired point, using the inequalities required of the

third point in Lemma 2.2. This takes ©(1) time.

e Conduct a search for the unique (if it exists) s; € S that has these grid coordinates. The
processors of the PRAM can use parallel binary searches to perform this step in O(logn)
time. The mesh can perform the search by a ©(n'/2) time random access read operation

within its local n'/2 x n'/2 block that contains a copy of S [6, 5].

e Solve the appropriate LP or half-plane intersection problem in ©(1) time to determine

whether or not the triple is e-regular.

o If the triple is e-regular, update the count associated with the triple’s initial pair to 3.

This takes ©(1) time.

7. For each e-regular set detected so far, we do recursive doubling to extend the e-regular set
until it is no longer possible to do so. On the mesh, as we do so, we also compactify the data so
that each initial pair “controls” enough processors to store its sequence so that at most ©(1)
sequence points per processor are in any processor of the mesh. This is done as follows. In each
iteration of the loop, for every ordered e-regular set (s, Siy,-- -, Sip_, > Si, ) DOt yet marked as

stopped or maximal (with respect to those that start (s;,, s;,)), do the following.

e Find the ordered e-regular set begun by the successor pair (if it exists) (si,,s,,,) of
the last pair (s;,_,, ;) of the sequence. On the PRAM, this can be done in ©(1) time.

On the mesh, this requires a copy of the e-regular set begun by the successor pair (if it



exists) to be sent to the block of processors currently storing the sequence with initial
pair (s;,, si,). This can be done by a random access read operation in ©(n®/4) time. If
no successor exists, mark the sequence as maximal (among those that start with the first

pair of the sequence).

e For the mesh, use a parallel prefix step to redistribute the data so that the union of the
two e-regular sequences discussed in the previous step is stored in the mesh at most ©(1)

sequence entries per processor in contiguous processors. This takes ©(n%/4) time [6, 5].

e Suppose the e-regular set found above is (sj,,Si,,,---;8i,). Solve an LP problem

(PRAM) or half-plane intersection problem (mesh) to determine if

(S’ius’iz: oo Sip_19 Si s Sipgry Singasr Sim)

is an e-regular set. If so, update the count of the e-regular sequence starting with (s;, , s;,)-
This takes ©(m) time on the PRAM (by Theorem 2.3) and ©(m!/?) time on the mesh
(by Theorem 2.4), since snake-like order is used.

o If the concatenated set formed above is not e-regular, mark the sequence (si,, Siy, - - -, Siy,)

as stopped in O(1) time.

e The sequence starting with a given initial pair is no longer processed by this loop when
the sequence is marked either as stopped or as maximal among those that start with the
first pair of the sequence. Thus, the parallel computer can test whether or not to exit this
loop by a semigroup (AND) operation in ©(logn) time for the PRAM, and in O(n®/*)

time for the mesh.

The recursive doubling steps build up a sequence of count O(n) in a geometric progression of
(sizes of) LP or half-plane intersection steps. Therefore, they require O(n) time on the PRAM,
O(n®/*) time on the mesh [6, 5]. Since the loop has O(logn) iterations, it requires altogether
O(nlogn) time for the PRAM and O(n5/*logn) time for the mesh.

. For each sequence (si,, Siy, - - -, Si_, » Si,, ) marked as stopped when we attempted to extend the
sequence with (84, i 0s---,5i, ), we must determine how much of (si,,,, 560+ Sinm)
can be concatenated to (8i,, Siy,-- -, Si,_,, 8, ) While preserving e-regularity. This is done by



10.

11.

applying a binary search technique to (si,,,,Si;40s---58i,), during each stage of which we
solve an LP problem (for the PRAM) or a half-plane intersection problem (for the mesh) to
determine if the corresponding concatenated sequence is e-regular. Since the binary search
technique requires O(logn) iterations, it follows from Theorem 2.3 that this takes O(nlogn)
time for the PRAM, and from Theorem 2.4 that this takes O(n®/*logn) time on the mesh.
In an additional ©(1) time, mark the resulting sequence as maximal (among those starting

(si;, 8i5)) and update its count.

. The previous steps have constructed, for each pair (s;,s;), the maximal e-regular set among

those that start with (s;, s;). In the terminology of [7], these are mazimal s;-initiated sequences.

We may determine which of these are maximal e-regular sets as follows.

e Each (s;, s;) finds the record of its opposite-directed pair, (s;, s;). Suppose the successor
of (sj,s;) is (8;,54). Then (s;,s;) is the successor of (s,,s;). Since the pairs have been
ordered, this takes O(logn) time for the PRAM. For the mesh, this operation can be done

via a random access read in ©(n®/4) time.

e If the successor (s;,sy,) of (sj,s;) exists and the maximal e-regular set among those that
start with (s,, s;) has count greater than the count of the maximal e-regular set among
those that start with (s;, s;), then the latter is not maximal; otherwise, it is maximal if
and only if the count of the sequence is at least 3. This may be determined from the

above in ©(1) time.

Now we have ©(n?) sequences, some of which are marked as maximal e-regular sets, the rest
of which are marked as not maximal e-regular sets. We may use a parallel prefix operation to
initialize an array X of pointers so that X; points to the i** maximal e-regular set. This takes

O(logn) time for the PRAM, O(n®/*) time for the mesh.

The same set may be indexed more than once by members of X (in reverse order). If desired,

we may remove duplicate sets from a listing of the sets indexed by X as follows.

e For each X; € X, create a quadruple (a,b,c,d) as follows. Suppose the sequence in-

dexed by X; i (84, Sigs -« -5 Sin_1, S, )- 1f; With respect to lexicographic order, (s;,,8:,) <



(Siy» Sir_1), let
(a,b,¢,d) = (Siys Sias Sins Sin—1);
otherwise, let
(a,b,e,d) = (i), Siy_q>SizsSin)-
This takes ©(1) time on the PRAM. On the mesh, since each sequence is stored in a

submesh of size n, it takes O(n'/?) time.

e Sort X by the quadruples constructed above. This may be done in O(logn) time on the
PRAM, O(n5/*) time on the mesh.

e Perform a parallel prefix on X that eliminates the sequence indexed by X; if its quadruple
coincides with the quadruple of the sequence indexed by X;_;. This takes ©@(logn) time
for the PRAM, O(n®/*) time for the mesh.

Thus, our algorithm takes O(nlogn) time on a CREW PRAM of ©(n?) processors and ©(n®/?)

memory, and O(n5/*logn) time on a mesh of ©(n®/2) processors. B

4 Further Remarks

In this paper, we have given a parallel algorithm to find all maximal e-regular subsets of a finite
planar set. Our algorithm is significantly different than that of [7], which seems inherently sequential.
The algorithm of [7] runs in O(n®/?) time. Our algorithm runs in O(nlogn) time on a medium-
grained CREW PRAM of ©(n?) processors and ©(n5/?) memory, and in O(n®/*logn) time on a
fine-grained mesh of ©(n®/2) processors. Note the latter is within a factor of logn of being optimal

for the mesh.
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