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 PAPER FOLDING AND CONVERGENT SEQUENCES

 Paper folding can help in understanding some infinite sequences and iti finding
 their limits. A simple physical model useful at all levels of ability is presented
 and infinite sequences of interest to senior high school students are explored.

 By WILLIAM J. RAPAPORT

 Indiana University?Bloomington
 Bloomington, Indiana

 THERE are many well-known phys
 ical representations of convergent se
 quences. A standard example is to traverse
 the length of a room by walking half the
 remaining distance each time a "step" is
 taken. One sequence corresponding to this
 model (0, y2, %, %, i^e, . . .) has 1 as
 its obvious limit.
 There is a sequence (see table 1) that

 also has a simple and interesting physical
 model but whose limit is not so obvious.
 And precisely because of these facts, the
 sequence and its physical representation
 can be used as the basis and motivation
 for several interesting lessons.

 The physical model requires the student
 (or the teacher) to fold a strip of paper
 according to the directions given in the
 next section. One lesson that can be based
 on this exercise involves discovery of a

 mathematical description of the resulting
 sequence and finding the limit of this
 sequence. This is done in the section called
 "Mathematical Description of the Se
 quence." In the last section, "Other Re
 lated Lessons," some other lessons that
 can be built around the physical model are
 suggested.

 Obtaining a Sequence by Folding

 Take a strip of adding-machine tape
 at least twelve inches long. (Any size piece

 The author wishes to thank Professor Stanley
 Taback for his helpful comments on an earlier
 draft of this paper.

 of paper that is suitable for folding will
 do, but at least one of its edges must be
 straight). Label the left edge A and the
 right edge (see fig. la).

 The sequence of folds is as follows:

 1. Fold to the left to coincide with A
 (see fig. lb) ; call the crease that is created

 by this fold, C (see fig. lc).

 2. Without unfolding the paper, fold
 to the right to coincide with C, forming
 a second crease, D (see fig. Id). Just as
 a check, the paper (when viewed from the
 side) should now look like fig. le).

 3. Without unfolding, fold to the left
 to coincide with D, creating crease E (top
 view in fig. If, side view in fig. lg).

 4. Continue as before, successively fold
 ing to the right, left, and so on, so that
 at the end of each folding operation,
 coincides with the crease made last.

 After three more folds, for example, the
 side view should look like figure lh.
 (Making the folds is actually quite sim

 ple, certainly much simpler than the
 verbal description.)

 An interesting question comes to mind
 immediately: Where will edge appear if
 one could continue folding indefinitely?

 Some students might not be convinced
 that this question is meaningful (unlike
 the room-traversing example where most
 students are certain that the other side of

 the room would eventually be reached).
 One way to clarify the question is to
 unfold the paper so that it resembles fig
 ure la again, except that now it is creased.
 Make a cut with scissors from to fold
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 Fig. 1

 C and then up to the top edge (see fig. 2),
 thus cutting off one-fourth of the paper.
 Now refold the paper as before, this time
 marking a dot after each fold is made
 in order to show where lands (see fig. 3).

 If the dots are thought of as points on
 a number line, you should be able to see
 how they begin to cluster around one

 point. (This can be made even clearer by
 using a longer piece of paper, thus making
 it possible to make more folds.) It is the
 cluster, or limit, point that we desire to
 find. You might guess, by inspection, that
 the limit point is a certain, very simple,
 fraction of the way from A to B* Let us
 now find out exactly.

 second cut

 Fig. 2

 first
 "cut

 D E F
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 tg)  We thus obtain the following sequence (of
 positions of B) :

 Fig. 3
 Mathematical Description of the Sequence

 Think of the top edge of the paper as
 a number line, with 0 at edge A and 1 at
 edge B. We have already mapped the
 sequence of folds onto a sequence of dots
 or points. We now want to map this point
 sequence onto a sequence of numbers so
 that we can employ numerical techniques
 to answer our question. The trick is to do
 this in an efficient way. Allowing each
 student in a laboratory situation to do
 this in his or her own way is advisable.
 Alternatively, some class time could be
 spent on deciding precisely what mapping
 to use. I suggest the following.

 After fold 1, ? is at 0 on the number
 line. After fold 2, is at ^, since it then
 coincides with crease C (which was the
 result of folding the paper in half). After
 fold 3, coincides with crease D, which
 was obtained by folding the halved paper
 in half; is now at %. Although the
 fourth fold halves again, the result is not
 Ys, but %. The reason for this may be
 seen by realizing that the exercise is a
 physical model for averaging: after the
 fourth fold, is in the middle of its last
 two positions and y2). Folding, that is,
 averaging, a fifth time yields %?? Table 1
 may be derived.

 TABLE 1

 Fold  Position of

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

 0
 1/2
 1/4
 3/8
 5/16
 11/32
 21/64
 43/128
 85/256
 171/512
 341/1024

 3
 8 ' 16

 Our question may now be phrased more
 precisely: What is the limit of sequence St

 In order to answer this question, it is
 necessary to find a formula for arbitrary
 terms of S. Clearly, the denominators of
 the terms are powers of 2. In fact, for
 fold n, the denominator (of the fraction
 representing the position of after the
 nth fold) ia?""1. Let the first term (i.e., 0)
 in sequence S be called aly the second term
 (i.e., y2) a*, and so on, so that we may
 say that the denominator of a* is 2*"1 (for
 > 1 ; it is assumed throughout that is

 a natural number). Now the numerator of
 an for each is needed.

 It is at this point that the students'
 problem-solving abilities are put to the
 test, for although there are many pat
 terns to be found in this sequence, a pat
 tern that will be useful for our purposes
 can prove to be quite elusive. One method
 (out of many) begins by expressing S
 recursively (where a and a* are given)
 and then finding an equivalent formula in
 which an depends only on (i.e., a form
 ula that does not require knowing in ad
 vance any terms of S).
 We have already seen that each term is

 the average of the two preceding terms.
 (Note that before folding, i.e., at "fold"
 0, is located at 1. Question: Where is

 at "fold" -1?) Thus,

 (1)

 al = 0
 Cht = i

 On + <*n+l
 ^+2 = -?  (if > 1).

 Formula (1) is a recursive formula (with
 two initial conditions) that generates S.
 It allows us to imagine folding as many
 times as we wish, eliminating the practical
 limitations of the thickness and length of
 the paper. The problem, though, is to find
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 lim a?, and, as interesting as (1) may be,
 n???

 it does not help much.
 Recall that a formula is needed for the

 numerator of an for each n. That is, a
 formula is wanted for an arbitrary term of
 the sequence S' of numerators:

 S': 0, 1, 1, 3, 5, 11, ... .

 Call each term of this new sequence bn (for
 > 1). Thus, an = 6n/2n'1 (for > 1).

 Next is the derivation of a simple recursive
 formula for any term of wherein each
 term depends on the two previous terms.
 The determination of this formula is a
 nice short exercise by itself. The result
 follows:

 ?! = 0
 (2) b2 = 1

 6n+2 = 2bn + K+1 (if > 1).

 However, this is not just what was
 wanted.

 There is a more interesting line of
 attack. Is there any property of either
 sequence, S or that reflects the physical
 fact that the folds alternate from right
 to left? There are at least two such prop
 erties.

 First, observe that each term of S' (af
 ter the first) is either one more than or
 one less than twice the preceding term;
 that is, ??+i = 2bn ? 1 (for > 1). One
 can then verify (or discover) formula
 (3) :

 (3)  ?! = 0

 6W+1 = 2?n + (-l)n-1 (ifn> 1).

 Here, the alternation in folding direction
 is reflected in the alternating parity of the
 terms of the sequence (1, ? 1, 1, ? 1,. . .)
 generated by ( ?l)n_1. Formula (3) is
 halfway to the general formula ; it repre
 sents an improvement over (2) in that it
 has only one initial condition. In order to
 eliminate the need for any such initial
 condition, it is necessary to express the nth
 term of S' (or S) in terms of only.

 Success comes by observing a further
 pattern: the sums of consecutive pairs of
 terms of S' are powers of 2. That is,

 (4) ?n+&n+1 = 2w-1 (forn>l).
 Since (4) is equivalent to

 (5) 6n+1 = 2"-1 - bn (forn>l),
 the right-hand sides of (3) and (5) may
 be set equal to each other in order to find
 the desired formula (n > 1, throughout).

 26n + (-l)n-1 = 2"-1 - bn
 sbn = 2 "1 - (-I)""1

 2"1 - (-1 "1 (6)

 (7)

 =

 a? =  - (-ir
 3?2

 With (7) we have reached our goal. It
 now remains to find lim a . This may be

 -?oo

 done as follows:

 lim a?
 -+a

 = lim 2 "1 - (-1)*
 3?2"-1

 ? ^-(-ir1 - ?'llI?l ^ ? -? &

 But |-1/2| < 1; therefore, lim (-1/2)"'1

 = lim (-1/2)" = 0 (cf. Walter Rudin,
 ??oo

 Principles of Mathematical Analysisf
 theorem 3.20). Hence, lim a = 1/3, as the

 n? ?

 reader may have conjectured. (An interest
 ing point to consider is this: Where did the
 3 come from, when it was powers of 2 that
 seemed to play such an important role?
 Hint: Look at (6).)
 A different method of solution arises

 from the aspect of S' that reflects the
 alternating property of the folding rule.
 Two subsequences can be derived from
 S'?one for even values of and one for
 odd values of (see table 2).
 Clearly, the odd values correspond to
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 TABLE 2

 Odd  Even

 0
 1
 5

 21
 85

 2
 4
 6
 8
 10

 1
 3
 11
 43
 171

 folds to the left and the even values to
 folds to the right The student should dis
 cover (or be led to see) that the pair-wise
 differences of the terms of the odd sub
 sequence are 1, 4, 16, 64, ... , and those
 for the even subsequence are 2, 8, 32, 128,
 .... That is, for the odd subsequence,
 the pair-wise differences are 2?, 22, 2*,...,
 22*, . . . (k > 0), whereas for the even
 subsequence, the pair-wise differences are
 21, 28,25, . . . , 22*+1, . . . (fc > 0).

 The students should then find (follow
 ing the methods suggested above) formu
 las for these subsequences, calculate the
 limits for each subsequence, and see that
 each limit is This alternative ap
 proach affords a good example of the fact
 that if a sequence converges to a limit L,
 then all of its subsequences also converge
 to L.

 Other Related Lessons

 One of the nicer aspects of this exercise
 is that it can be used at many levels of
 ability and for many different purposes.

 At an elementary level, all the numer
 ical manipulations can be ignored and the
 emphasis placed on making the folds, in
 order to give the students an intuitive
 idea of limits that differs fremi the more

 familiar example mentioned at the begin
 ning.

 A lesson could also be developed for a
 unit on measuring. For such a lesson, a
 twelve-inch length of adding-machine tape
 and a twelve-inch ruler for each student
 (or a thirty-six-inch length and a yard
 stick for a larger group) would be ideal.
 The student could then measure, after
 each fold, the distance of each crease from

 edge Ay getting a sequence whose limit is
 4" (or 12" for the 36" length). This would
 not only afford practice in measurement,
 but also give the students a good feel for
 the limiting process. (One warning for
 metric enthusiasts: % of 12" is a very
 "clean" 4", but % of 10 cm. might prove
 impractical. Try a 15 cm. length or some
 other multiple of 3 ; after all, a teacher's
 materials must be prepared in advance
 just as much as a magician's!)

 For a class studying fractions, this exer
 cise could be used to give the students
 practice in working with fractions, using
 formula (1) to derive terms in the se
 quence. Moreover, by changing each frac
 tion into its decimal equivalent, the stu
 dents not only will have practice in di
 vision, but also will be able to "see" the
 terms of the sequence approach .333 . . . ,
 both from "above" and from "below." And,
 of course, it may serve as a motivat
 ing exercise for a unit on averaging.
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