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Time and Difficulty

A Predictive Analytic Model

Means that the model:

Addresses a series of events or decisions,each with possible
outcomes m1,m2, . . . ,mj , . . .

Assigns to each mj a probability pj .

Projects risk/reward quantities associated to the outcomes.

Also assigns confidence intervals for pj and those quantities.

In a utility-based model, each mi has a utility or cost ui. The main
risk/reward quantity is then E =

∑
i piui. Examples:

Insurance: mi are risk factors; costs ui do not influence pi.

Chess: mi are legal moves; ui are values given by strong
chess-playing programs that objectively say how good the moves
are. In my model, pi depend on ui per bounded rationality.

Multiple-choice tests: mi are possible answers to a test question,
ui = gain/loss for right/wrong answer.
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Time and Difficulty

Chess and Tests—With Partial Credits (Or LLMs?)

Here (b,c) are equal-optimal choices, (a) is bad, but (d) and (e) are
reasonable—worth part credit.
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A Difficult Trap (Kramnik-Anand, 2008 WC)
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Aptitude—Via Elo Grades (calculator)

Named for Arpad Elo, number RP rates skill of player P .

E.g. 1000 = bright beginner, 1600 = good club player, 2200 =
master, 2800 = world championship caliber.
Computer engines are far higher, e.g.: Stockfish 16 = 3544,
Torch 1.0 = 3531, Komodo Dragon 3.3 = 3529.
Expectation e = 1

1+exp(c(RP−RO)) depends only on difference to

opponent’s rating RO. With c = (ln 10)/400 the curve is:

https://wismuth.com/elo/calculator.html 


Time and Difficulty

Aptitude—Via Elo Grades (calculator)

Named for Arpad Elo, number RP rates skill of player P .
E.g. 1000 = bright beginner, 1600 = good club player, 2200 =
master, 2800 = world championship caliber.

Computer engines are far higher, e.g.: Stockfish 16 = 3544,
Torch 1.0 = 3531, Komodo Dragon 3.3 = 3529.
Expectation e = 1

1+exp(c(RP−RO)) depends only on difference to

opponent’s rating RO. With c = (ln 10)/400 the curve is:

https://wismuth.com/elo/calculator.html 


Time and Difficulty

Aptitude—Via Elo Grades (calculator)

Named for Arpad Elo, number RP rates skill of player P .
E.g. 1000 = bright beginner, 1600 = good club player, 2200 =
master, 2800 = world championship caliber.
Computer engines are far higher, e.g.: Stockfish 16 = 3544,
Torch 1.0 = 3531, Komodo Dragon 3.3 = 3529.

Expectation e = 1
1+exp(c(RP−RO)) depends only on difference to

opponent’s rating RO. With c = (ln 10)/400 the curve is:

https://wismuth.com/elo/calculator.html 


Time and Difficulty

Aptitude—Via Elo Grades (calculator)

Named for Arpad Elo, number RP rates skill of player P .
E.g. 1000 = bright beginner, 1600 = good club player, 2200 =
master, 2800 = world championship caliber.
Computer engines are far higher, e.g.: Stockfish 16 = 3544,
Torch 1.0 = 3531, Komodo Dragon 3.3 = 3529.
Expectation e = 1

1+exp(c(RP−RO)) depends only on difference to

opponent’s rating RO. With c = (ln 10)/400 the curve is:

https://wismuth.com/elo/calculator.html 


Time and Difficulty

Position Value ←→ Expectation (2000 vs. 2000)

Similar 0.75 expectation when up 1.30 vs. equal-rated player.

Complication: dependence on rating itself.

https://rjlipton.com/2018/09/07/sliding-scale-problems/
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Item-Response Theory (IRT source)

Horizontal axis governs difficulty in relation to θ = ability.

Slope at y = 0.5 correctness rate is the discrimination factor.

https://support.sas.com/resources/papers/proceedings14/SAS364-2014.pdf
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Time and Difficulty

Defining Difficulty

For any fixed aptitude level θ, difficulty ≈ expected points loss.

In chess, this is our EL =
∑

i pi(u1 − ui) =
∑

i piδi.

Call this expected loss the hazard.

Depends on rating because the probabilities pi projected by my
model depend on rating R.

My model divides out dependence on R. “Expectation Weights,
Normalized” (EWN).

Technotes: In a log-linear model, − log pi ∼ ui.

Then EL ∼
∑

i pi log(1/p1)−
∑

i pi log(1/pi) = log( 1
p1
)−H where

H is entropy.

However, my model is double-log linear: log pi
log p1

∼ exp(δi).

Why double-log works and single-log fails.

How well does hazard—normalized over aptitude—work as a
measure of difficulty?

https://rjlipton.com/2018/10/18/london-calling/
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Time and Difficulty

A Philosophical Issue

Should a grading metric µ expect to assess lower per-
formance on more-difficult questions, or should it show
a constancy of signal θ across all types of questions?

I typically design exams to have 20% A-level questions, 30%
B-level, 30% C-level, 20% D-level.

Overall threshold for A: 90%.

Getting 60% on the A-level questions puts you on-track, even
though 60% by itself is C-range (or worse).

Thus the simple grading score µ does not give constant signal—it
needs context.

Should we use metrics that say “A-level” etc. in each category?
(Like curving).
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Time and Difficulty

Model and Metrics

The following “raw metrics” on series of games are used generally:

T1-match: Agreement with the move listed first by the computer.

EV-match: Includes moves of equal-optimal value not listed first.

ASD: Average difference in value from inferior moves (over all
positions), but scaled down when one side has advantage.

Called ACPL for average centipawn loss without scaling.

All should vary with difficulty, hence not give constancy of signal.

My Intrinsic Performance Rating (IPR) metric fits parameters

s for “sensitivity” (∼ strategic ability), and
c for “consistency” (in surviving tactical minefields)

to give the closest Virtual Player P (s, c) on any set of games.

Then trained correspondence (s, c)→ R gives IPR as an Elo rating.
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Time and Difficulty

How Accurate Are Model Projections?

Internal evidence that it gives ≈ (1 + ϵ) relative error with ϵ ≈ 0.04 for
most rating levels.

Means it supports betting on chess moves with only
5% “vig” to avoid arbitrage. (Except for bets against clear-best moves.)
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Time and Difficulty

IPR and Hazard (World Senior Teams 2024)

Older players, established ratings (but deflated), average 2080.

Focus on 2000–2200. Analysis by Stockfish 11 in EWN mode.

IPR overall: 2125 +- 40. Broken down according to
[dis-]advantage:

1–2 pawns behind: 2170 +- 105; worse: 2065 +- 110.
1–2 pawns ahead: 2085 +- 120; better: 2020 +- 155
Within 1.00 of equal: 2145 +- 45; within 0.50: 2125 +- 65.

Reasonable constancy of signal.

But on positions with ≥ 1.5 times normal hazard: 2255 +- 65.

With ≥ 2x hazard: 2170 +- 115. Could be consistent. But—

Positions of of 0.5x or lower hazard: 1800 +- 180.

Not constancy of signal.

Low-hazard positions either have an obvious best move or many
good moves.
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Time and Difficulty

Example: Niemann-Shankland, USA Ch. 2023

Low-hazard because crisis is far off, but difficult in real chess terms.
Low EL, high entropy H. (Niemann lost.)



Time and Difficulty

Aspects of Difficulty (Besides Hazard)

1 Needing deep cogitation to find best move or avoid a trap.
Expressly modeled—e.g. to project the trap for Kramnik.

2 Being at a disadvantage. Chess, not so much examinations.
Model performs fine.

3 Humans perform poorly. Basic with repeatable test questions.
Repeatable chess positions, however, are opening book knowledge.

4 Humans take a long time to answer.
Can’t project ahead of time (owing to non-book ≡ non-repeatable).
But certainly directly captures the human experience of difficulty.

5 Question is inherently complex or taxing.
How to measure this internally?
Sunde, Zegners, and Strittmatter [SZS, Jan. 2022] propose counting
the time (i.e., number of position nodes) needed by chwess engine to
complete analysis to depth (say) 24.
Carow and Witzig [CW, Feb. 2024] consider all the above, but strive
for human-chess based measures.

https://arxiv.org/abs/2201.10808
https://ideas.repec.org/p/jgu/wpaper/2404.html
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Time and Difficulty

Time Budget and Effect on Quality

FIDE Standard Time Control: 90 minutes to turn 40, then 30
minutes more, with 30-second increment after every move. Allows
150 minutes to turn 60.

“Standard” control must allow at least 120 minutes to turn 60.

Some elite events allow 180, 195, even 210 minutes (to turn 60).

Rapid means any time giving under 60 minutes and at least 10.
Common is 15 min. plus 10-second increment, giving 25 to turn 60.

Blitz means under 10 minutes, most common is 3 minutes +
2-second increment, which gives 5 minutes—and so approximates
old-school 5-minute chess on analog clocks.

For 25-minute Rapid, I measure 240 reduction in quality per IPR.

For 5-minute Blitz, 575 lower. (Error bars for both are about ±25.)
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Time-Quality Curves (whole graph)
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Time and Difficulty

Predicated on Time Spent For a Move

Staying with players rated 2000 to 2200 at the World Senior Team Ch.

Positions on which they spent at most 30 seconds on the move:
2860 +- 75.

At most 10 seconds: 3235 +- 90.

Starting at turn 16 rather than 9: 3220 +- 100.

At most 5 seconds (sample size 605): 3230 +- 160.

What gives here? How about moves with long thinks—?

Positions with 5–10 minutes consumed: 1460 +- 85.

Using 10–15 minutes (705 positions): 1235 +- 170.

Using ≥ 15 minutes (371 positions): 1410 +- 205.

“Thinking Is Bad For You.” (At least it’s a bad sign...)

Vivid reproduction of [SZS 2022] (and also Anderson et al., 2016
thru now for online blitz).

https://technologyreview.com/2016/06/24/108265/data-mining-reveals-the-crucial-factors-that-determine-when-people-make-blunders/
https://www.microsoft.com/en-us/research/publication/designing-skill-compatible-ai-methodologies-and-frameworks-in-chess/
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Time and Difficulty

Hazard Vs. Time—and Time Left

Switching to Komodo 13.3 in place of Stockfish 11 as analyzing engine:

Overall IPR of Elo 2000-to-2200 players: 2175 +- 35.

Average thinking time over all moves (turns 9–60): 181 seconds.

IPR on turns of ≤ 0.5x hazard: 1635 +- 125.

Average thinking time in those positions: 145 seconds.

IPR on turns of ≥ 2x hazard: 2345 +- 125.

Average thinking time in those positions: 151 seconds.

Results are more as-expected on turns with little time budget left:

When player has ≤ 180 seconds left (633 turns): 1540 +- 280.

Or average ≤ 60 seconds left to turn 40, not counting increment
time: 1685 +- 200.

Or average 30 seconds left to turn 40, counting half the increment
time: 1395 +- 425. (In all cases, average hazard.)
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Time and Difficulty

Enter Entropy

Students in my CSE702 graduate seminar proposed a measure HU of
entropy that uses only the move utilities ui, not the projected
probabilities pi (nor their logs).

Avoids the rating feedback loop.

Average HU = 2.57.

Turns with HU ≤ 2: avg. time used 88 sec., IPR 2405 +- 100.

Turns with HU ≤ 1.5: avg. time used 72 sec., IPR 2485 +- 130.

Turns with HU ≤ 1: avg. time used 56 sec., IPR 2645 +- 165
(lower hazard too).

Turns with HU ≤ 0.5: avg. time used 40 sec., IPR 2580 +- 255
(much lower hazard).

Turns with HU ≥ 3: time used 252 sec., IPR 2000 +- 35.

Turns with HU ≥ 3.5 (702 pos.): time 312 sec., IPR 1965 +- 110.

(No position has HU ≥ 3.8. All cases have close to mean hazard.)

High entropy correlates well with (human experience of) difficulty.

Much more work to do...
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Time and Difficulty

Discussion and Q & A

[And Thanks]

[Possible extra slides for Q & A follow...optional, of course...]



Time and Difficulty

Cognitive Concepts and Conceits

Many results in cognitive decision making come from studies that

1 are well-targeted to the concept and hypothesis, but

2 have under 100 test subjects...

3 ...under simulated conditions...

4 ...with unclear metrics and alignment of personal vs. test goals...,
and where

5 ...reproducibility is doubtful and arduous.

The chess angle is to trade 1 against wealth of 2,3,4,5: lots of players
and games, real competition, clear goals and metrics (Elo ratings), and
not only reproducible but conducive to abundant falsifiable predictions.
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Time and Difficulty

Some Accompanying Stances

Extreme Corner of Data Science—since I need ultra-high confidence
on any claim.

Concern: Data modelers in less-extreme settings satisfice.

That is, their models are designed up to one particular goal but
don’t explore much of the harder adjacent metaspace.

Nonreproducibility, Mission Creep, and Shifting Sands.
E.g., I do not reproduce the longer conclusions of this study.

Cross-Validation...one point of which is:

How can we distinguish uncovering genuine cognitive phenomena
from artifacts of the model?

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3937878
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Time and Difficulty

Some Cognitive Nuggets

1 Dimensions of Strategy and Tactics (and Depth of Thinking).

But wait—the model has no information specific to chess...
Brain seems to register changes in move values as depth increases.

2 Machine-Like Versus Human Play

Garry Kasparov, as a 2012 Alan Turing Centennial test,
distinguished 5 games played by human 2200-level masters from 5
games by engines “stopped down” to 2200 level.

3 Relationship to Multiple-Choice Tests (with partial credits)

“Solitaire Chess” feature often gives part credits.
Large field of Item Response Theory (IRT).
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Cancer and Covid (= in-person and online chess)

Say you take a test that is 98% accurate for a cancer that affects
1-in-5,000 people...

...and get a positive. What are the odds that you have the cancer?

Not the same as the odds that any one test result is wrong.

Consider giving the test to 5,000 people, including yourself.

Among them, 1 has the cancer; expect that result to be positive.
But we can also expect about 100 false positives.
All you know at this point is: you are one of 101 positives.

So the odds are still 100-1 against your having the cancer.

The test result knocked down your prior 5,000-to-1 odds-against by
a factor of 50, but not all the way. Need a “Second Opinion.”

IMPHO, 1-in-5,000 ≈ frequency of cheating in-person.

A positive from a “98%” test is like getting z = 2.05. Not enough.

In a 500-player Open, you should see ten such scores.
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Time and Difficulty

The 99.993% Test

Suppose our cancer test were 600 times more accurate:
1-in-30,000 error.

That’s the face-value error rate claimed by a z = 4 result.

Still 1-in-6 chance of false positive among 5,000 people.

(This is really how a “second opinion” operates in practice.)

If the entire world were a 500-player Open, then 1-in-60 chance of
the result being natural.

Still not comfortable satisfaction of the result being unnatural.

IMPHO, the interpretation of CAS comfortable-satisfaction range
of final odds determination is 99%–99.9% confidence.

Target confidence should depend on gravity of consequences. (CAS)

Sweet spot IMHO is 99.5%, meaning 1-in-200 ultimate chance of
wrong decision. Same criterion used by Decision Desk HQ to
“call” US elections.

Higher stringency cuts against timely public service.
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IMPHO, the interpretation of CAS comfortable-satisfaction range
of final odds determination is 99%–99.9% confidence.

Target confidence should depend on gravity of consequences. (CAS)

Sweet spot IMHO is 99.5%, meaning 1-in-200 ultimate chance of
wrong decision. Same criterion used by Decision Desk HQ to
“call” US elections.

Higher stringency cuts against timely public service.
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Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.

From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.

Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane.

What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Covid in Non-Surge and Surge Times

Now suppose the factual positivity rate is 1-in-50.

We still have about 100 false positives, but now also 100 factual
positives.

A positive from a 98% test is here a 50-50 coinflip.

But a negative is good:

Only 2 false negatives will expect to come from the 100 dangerous
people.
From the 4,900 safe people, about 4,800 true negatives.
Odds that your negative is false are 2,400-to-1 against.

Fine to be on a plane. What happened is that the 98%-test result
multiplied your confidence in not having Covid by a factor of
almost 50.

Now suppose the factual positivity rate is 20%. Can we do
this in our heads?



Time and Difficulty

Back to Chess...

Suppose we get z = 4 in online chess with adult cheating rate 2%.

Out of 30,000 people:
1 false positive result.
600 factual positives.
So 600-1 odds against the null hypothesis on the z = 4 person.

A z = 3.75 threshold leaves about 200-1 odds. OK here, but not if
factual rate is under 1%.

This analysis does not depend on how many of the factual positives
gave positive test results.

If test is only 10% sensitive, then we will have only about 60
positive results. It sounds like the 1-in-60 case. But the chance of
getting a z = 4 result on the 1 brilliant player also generally goes
down to 1-in-10. The confidence ratio is 60/0.10 = 600-to-1 even so.

Sensitivity and soundness generally remain separate criteria.

This is relevant insofar as I often get a lot of 3.00–4.00 range results.
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Time and Difficulty

Pre-Check: The “Screening” Stage

Makes a simple “box score” of agreements to the chess engine being
tested and the scaled average centipawn loss from disagreements.

Creates a Raw Outlier Index (ROI) from the raw metrics.

ROI is on same 0-100 scale as flipping a fair coin 100 times: 50 is
the expectation given one’s rating and 5 is the standard deviation,
so the “two-sigma normal range” is 40-to-60.

Like medical stats except indexed to common normal scale.

65 = amber alert, 70 = code orange, 75 = red. Example.

Completely data driven—no theoretical equation.

Rapid and Blitz trained on in-person events in 2019. Slow chess
trained on in-person FIDE Olympiads from 2010 to 2018.

Does not account for the difficulty of games. That is the job of the
full model.

https://cse.buffalo.edu/~regan/chess/fidelity/data/Niemann/HavanaCapaMemEliteApr2022cat14_SF15d20-30pv1.sc4
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Creates a Raw Outlier Index (ROI) from the raw metrics.

ROI is on same 0-100 scale as flipping a fair coin 100 times: 50 is
the expectation given one’s rating and 5 is the standard deviation,
so the “two-sigma normal range” is 40-to-60.

Like medical stats except indexed to common normal scale.

65 = amber alert, 70 = code orange, 75 = red. Example.

Completely data driven—no theoretical equation.

Rapid and Blitz trained on in-person events in 2019. Slow chess
trained on in-person FIDE Olympiads from 2010 to 2018.

Does not account for the difficulty of games. That is the job of the
full model.
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Time and Difficulty

Rating Lag—Natural Versus Systematic

The #1 scientific role I’ve played during the pandemic has
been estimating the true skill growth of young players
while their official ratings have been frozen.

But this has perforce been post-normal science.

My “back of the envelope” formula held up over two years with
only one small revision for preteens.

Larger revision in Oct. 2022 to curtail projections past Elo 2000
level.

Would have been more “normal” if comprehensive studies of the
career arcs (measured by Elo rating) of young players were to hand.

Lack of such studies exposed by the controversy over Hans
Niemann’s rise from 2465 Elo to 2700.

Show this GLL article including example of Ms. Velpula Sarayu.

https://rjlipton.wpcomstaging.com/2021/07/30/pandemic-lag/
https://en.wikipedia.org/wiki/Post-normal_science
https://rjlipton.wpcomstaging.com/2023/08/04/should-these-quantities-be-linear/
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Time and Difficulty

Independent Corroboration of Others’ Work

The article’s larger subject is a drastic proposal by US statistician
Jeff Sonas—long used by FIDE—to overhaul chess ratings below
Elo 2000—that is, for beginning and amateur players.

(This is on top of things I’ve been telling FIDE about ratings above
2000.)

My own work has been “tinged” by this issue.

A natural metric apart from both my model and Sonas’s domain
cross-validates his observations and arguments.

I will now discuss some other applications that these solid
foundations enable.
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Time and Difficulty

Hans Niemann: Platform or Plateau?



Time and Difficulty

The Gender Gap in Chess

Is clear: with Judit Polgar retired, there are no women in the top
100 by rating.

Where/when does it begin?

How should one begin to address this question?

What data could corroborate a result—or a proposed explanation?

Picture emerging from recent youth events...?
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