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The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).

© Need to evaluate y = f(z) for M = millions of z.

© Each eval of f is expensive. Many repetitive evals.

© However, the target function u(yi, ..., yum) tolerates
approximation:

e Could be linear: p = sum;a;y;. For mean or quantile statistics.
o Could be non-linear but well-behaved, e.g., logistic regression.

© Two other helps: f is smooth and bounded.

© And we need good approximation to p(---) (only) under
distributions D(z) controlled by a few model-specific parameters,
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Taylor Expansion
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f(z) = f(u)+ Z(xi - ui)aTci(U) + o> (@ — w)(g — w)

© Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

© Problem is that now we need to memoize all f;(u) = g—i(u). 50x
datal!

© Main Question: Can we “cheat” by shortcutting the partials?
© If f were linear, obviously gTJ; = constant.
© What if the grid is warped “similarly” to f?
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Context: Decision-Making Model at Chess

Domain: A set of decision-making situations t.
Chess game turns

Inputs: Values v; for every option at turn ¢.
Computer values of moves m;

Parameters: s, c,... denoting skills and levels.
Trained correspondence to chess Elo rating &

Defines fallible agent P(s,c,...).

Main Output: Probabilities p;; for P(s,c,...) to select option 7 at
time ¢.

@ Derived Outputs:

o Aggregate statistics: move-match MM, average error AE, ...
o Projected confidence intervals for those statistics.
o “Intrinsic Performance Ratings” (IPR’s).

o6 o0 o o
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How the Model Operates

© Use analysis data and parameters s, c,... to compute “perceived
inferiorities” x; € [0.0,1.0] of each of N possible moves. Let
a;, =1—z;.

(@=00<m<om<- <ay)=(m=10>a> > ay~0)

h(p:)
h(p1)

@ It suffices to compute p;; then p; = h=1(a;h(p1)) is relatively easy.

© For a fixed function h, solve = a; subject to vazl p; = 1.

61 c . . .
© Model uses a; = e (%) , where §; is the scaled difference in value
between the best move and the 2-th best move. Also fairly cheap.

© But y = p; = f(z) may require expensive iterative approximation.

© Note f is symmetric, so  can be an ordered sequence.
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@ The simple function h(p) = p, so p; = S works poorly.

© Much better is h(p) = m.
Q@ Gives p; = p!*, where b; = 1/a; = 15%.
© Problem: Given y and bq,..., by, find p such that

P A p% 4™ =y

@ For N =1, simply p = \/y. So this generalizes taking roots.
@ We have y = 1 and b; = 1. Can this be solved without iteration?
@ Also: Current Expansion uses data for each depth d.
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Axioms and Properties

© Suppose z = (0.0,0.0,0.0,0.0,1.0,1.0,...,1.0).

© This means four equal-optimal moves, all others lose instantly.
© The model will give p; = py = p3 = ps = 0.25, all other p; = 0.
© Axiom: Influence of poor moves tapers off:

0
As z; — 1.0, —f — 0.
8:::@-

@ Axiom: Influence of lower-ranked moves becomes less:

.. Of of
F —— <
or 1 <7, ij<8m¢
(Not quite what was meant. . .)
© “Universal Guess”: In the first Taylor term, use

of 1 1
xS = (1 - ).
oz, 7%~ 71— =)
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© Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
© Grid needs less precision also for higher coordinates 2.

© Given z = (zy,...,2y), how to define “nearest” gridpoint
u=(u,...,un)?
© How to define a good bounding set u,v,...?

© How to make the computation of nearby gridpoints efficient?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),
© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

2]
o
o

Bounds z™ and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

“Nearest Neighbor” is defined by a nondecreasing sequence
using only values from z+ and z~. Always u; = 0.0 = z;” = z; .
Start with =, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

© Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.

© Like a heuristic for solving Knapsack problems.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.

()
© Like a heuristic for solving Knapsack problems.
o

Refinements which we have not yet fully explored include working
backward from 72 = N (too).



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

© Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.

© Like a heuristic for solving Knapsack problems.

© Refinements which we have not yet fully explored include working
backward from 72 = N (too).

@ Combine with “universal gradient” idea, or even ignore said idea.
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Results So Far. ..

© We ran experiments under a randomized distribution D, in which
r € [z;_1, 1] is sampled uniformly and

z, = xi—1 +€(r —zi—1) (capped at z; = 1.0).

© That is, we make each move randomly slightly inferior to the
previous one. We choose € according to N, to make expectation
z; ~ 1.0 as 7 nears N.

© Results under D, are good: 3-place precision on u(...) given
2-place to 1-place precision on grid.

© Results on real chess data. . .still a work in progress.
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Results for NN+UG
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Results for Just NN

Approximation based on Nearest Neighbor Mapping
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