
Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Efficient Memoization for Approximate Function
Evaluation over Sequence Arguments

AAIM 2014

Tamal Biswas and Kenneth W. Regan
University at Buffalo (SUNY)

9 July 2014



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.

Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

1 Space of points x = (x1; : : : ; xN ), where N is not small (N � 50).

2 Need to evaluate y = f (x ) for M = millions of x .

3 Each eval of f is expensive. Many repetitive evals.

4 However, the target function �(y1; : : : ; yM ) tolerates
approximation:

Could be linear: � = sumjajyj . For mean or quantile statistics.
Could be non-linear but well-behaved, e.g., logistic regression.

5 Two other helps: f is smooth and bounded.

6 And we need good approximation to �(� � � ) (only) under
distributions D(x ) controlled by a few model-specific parameters,



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f (u) for gridpoints u . Given x not in the
grid, several ideas:

1 Find nearest neighbor u , use f (u) as y . Not good enough
approximation.

2 Write x =
P

k bkuk , use y =
P

k bk f (uk ). Seems better. But N is
not small.

3 Use any neighbor u and do Taylor expansion.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f (u) for gridpoints u . Given x not in the
grid, several ideas:

1 Find nearest neighbor u , use f (u) as y . Not good enough
approximation.

2 Write x =
P

k bkuk , use y =
P

k bk f (uk ). Seems better. But N is
not small.

3 Use any neighbor u and do Taylor expansion.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f (u) for gridpoints u . Given x not in the
grid, several ideas:

1 Find nearest neighbor u , use f (u) as y . Not good enough
approximation.

2 Write x =
P

k bkuk , use y =
P

k bk f (uk ).

Seems better. But N is
not small.

3 Use any neighbor u and do Taylor expansion.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f (u) for gridpoints u . Given x not in the
grid, several ideas:

1 Find nearest neighbor u , use f (u) as y . Not good enough
approximation.

2 Write x =
P

k bkuk , use y =
P

k bk f (uk ). Seems better. But N is
not small.

3 Use any neighbor u and do Taylor expansion.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f (u) for gridpoints u . Given x not in the
grid, several ideas:

1 Find nearest neighbor u , use f (u) as y . Not good enough
approximation.

2 Write x =
P

k bkuk , use y =
P

k bk f (uk ). Seems better. But N is
not small.

3 Use any neighbor u and do Taylor expansion.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f (u) for gridpoints u . Given x not in the
grid, several ideas:

1 Find nearest neighbor u , use f (u) as y . Not good enough
approximation.

2 Write x =
P

k bkuk , use y =
P

k bk f (uk ). Seems better. But N is
not small.

3 Use any neighbor u and do Taylor expansion.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

f (x ) = f (u) +
X̀

i=1

(xi � ui )
@f
@xi

(u) +
1
2

X

i ;j

(xi � ui )(xj � uj )
@2f

@ui@uj
+ � � �

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi (u) = @f
@xi

(u). 50x
data!

3 Main Question: Can we “cheat” by shortcutting the partials?
4 If f were linear, obviously @f

@xi
= constant.

5 What if the grid is warped “similarly” to f ?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

f (x ) = f (u) +
X̀

i=1

(xi � ui )
@f
@xi

(u) +
1
2

X

i ;j

(xi � ui )(xj � uj )
@2f

@ui@uj
+ � � �

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi (u) = @f
@xi

(u). 50x
data!

3 Main Question: Can we “cheat” by shortcutting the partials?
4 If f were linear, obviously @f

@xi
= constant.

5 What if the grid is warped “similarly” to f ?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

f (x ) = f (u) +
X̀

i=1

(xi � ui )
@f
@xi

(u) +
1
2

X

i ;j

(xi � ui )(xj � uj )
@2f

@ui@uj
+ � � �

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi (u) = @f
@xi

(u). 50x
data!

3 Main Question: Can we “cheat” by shortcutting the partials?
4 If f were linear, obviously @f

@xi
= constant.

5 What if the grid is warped “similarly” to f ?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

f (x ) = f (u) +
X̀

i=1

(xi � ui )
@f
@xi

(u) +
1
2

X

i ;j

(xi � ui )(xj � uj )
@2f

@ui@uj
+ � � �

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi (u) = @f
@xi

(u). 50x
data!

3 Main Question: Can we “cheat” by shortcutting the partials?

4 If f were linear, obviously @f
@xi

= constant.
5 What if the grid is warped “similarly” to f ?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

f (x ) = f (u) +
X̀

i=1

(xi � ui )
@f
@xi

(u) +
1
2

X

i ;j

(xi � ui )(xj � uj )
@2f

@ui@uj
+ � � �

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi (u) = @f
@xi

(u). 50x
data!

3 Main Question: Can we “cheat” by shortcutting the partials?
4 If f were linear, obviously @f

@xi
= constant.

5 What if the grid is warped “similarly” to f ?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

f (x ) = f (u) +
X̀

i=1

(xi � ui )
@f
@xi

(u) +
1
2

X

i ;j

(xi � ui )(xj � uj )
@2f

@ui@uj
+ � � �

1 Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

2 Problem is that now we need to memoize all fi (u) = @f
@xi

(u). 50x
data!

3 Main Question: Can we “cheat” by shortcutting the partials?
4 If f were linear, obviously @f

@xi
= constant.

5 What if the grid is warped “similarly” to f ?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t .
Chess game turns

2 Inputs: Values vi for every option at turn t .
Computer values of moves mi

3 Parameters: s ; c; : : : denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P(s ; c; : : : ).
5 Main Output: Probabilities pt ;i for P(s ; c; : : : ) to select option i at

time t .
6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t .
Chess game turns

2 Inputs: Values vi for every option at turn t .
Computer values of moves mi

3 Parameters: s ; c; : : : denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P(s ; c; : : : ).
5 Main Output: Probabilities pt ;i for P(s ; c; : : : ) to select option i at

time t .
6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t .
Chess game turns

2 Inputs: Values vi for every option at turn t .
Computer values of moves mi

3 Parameters: s ; c; : : : denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P(s ; c; : : : ).
5 Main Output: Probabilities pt ;i for P(s ; c; : : : ) to select option i at

time t .
6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t .
Chess game turns

2 Inputs: Values vi for every option at turn t .
Computer values of moves mi

3 Parameters: s ; c; : : : denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P(s ; c; : : : ).

5 Main Output: Probabilities pt ;i for P(s ; c; : : : ) to select option i at
time t .

6 Derived Outputs:
Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t .
Chess game turns

2 Inputs: Values vi for every option at turn t .
Computer values of moves mi

3 Parameters: s ; c; : : : denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P(s ; c; : : : ).
5 Main Output: Probabilities pt ;i for P(s ; c; : : : ) to select option i at

time t .

6 Derived Outputs:
Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

1 Domain: A set of decision-making situations t .
Chess game turns

2 Inputs: Values vi for every option at turn t .
Computer values of moves mi

3 Parameters: s ; c; : : : denoting skills and levels.
Trained correspondence to chess Elo rating E

4 Defines fallible agent P(s ; c; : : : ).
5 Main Output: Probabilities pt ;i for P(s ; c; : : : ) to select option i at

time t .
6 Derived Outputs:

Aggregate statistics: move-match MM, average error AE, . . .
Projected confidence intervals for those statistics.
“Intrinsic Performance Ratings” (IPR’s).



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

1 Use analysis data and parameters s ; c; : : : to compute “perceived
inferiorities” xi 2 [0:0; 1:0] of each of N possible moves. Let
ai = 1� xi .

(x1 = 0:0 � x2 � x3 � � � � � xN ) � (a1 = 1:0 � a2 � � � � � aN � 0)

2 For a fixed function h , solve h(pi )
h(p1) = ai subject to

PN
i=1 pi = 1:

3 It suffices to compute p1; then pi = h�1(aih(p1)) is relatively easy.

4 Model uses ai = e�(
�i
s )

c
, where �i is the scaled difference in value

between the best move and the i -th best move. Also fairly cheap.
5 But y = p1 = f (x ) may require expensive iterative approximation.
6 Note f is symmetric, so x can be an ordered sequence.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

1 Use analysis data and parameters s ; c; : : : to compute “perceived
inferiorities” xi 2 [0:0; 1:0] of each of N possible moves. Let
ai = 1� xi .

(x1 = 0:0 � x2 � x3 � � � � � xN ) � (a1 = 1:0 � a2 � � � � � aN � 0)

2 For a fixed function h , solve h(pi )
h(p1) = ai subject to

PN
i=1 pi = 1:

3 It suffices to compute p1; then pi = h�1(aih(p1)) is relatively easy.

4 Model uses ai = e�(
�i
s )

c
, where �i is the scaled difference in value

between the best move and the i -th best move. Also fairly cheap.
5 But y = p1 = f (x ) may require expensive iterative approximation.
6 Note f is symmetric, so x can be an ordered sequence.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

1 Use analysis data and parameters s ; c; : : : to compute “perceived
inferiorities” xi 2 [0:0; 1:0] of each of N possible moves. Let
ai = 1� xi .

(x1 = 0:0 � x2 � x3 � � � � � xN ) � (a1 = 1:0 � a2 � � � � � aN � 0)

2 For a fixed function h , solve h(pi )
h(p1) = ai subject to

PN
i=1 pi = 1:

3 It suffices to compute p1; then pi = h�1(aih(p1)) is relatively easy.

4 Model uses ai = e�(
�i
s )

c
, where �i is the scaled difference in value

between the best move and the i -th best move. Also fairly cheap.
5 But y = p1 = f (x ) may require expensive iterative approximation.
6 Note f is symmetric, so x can be an ordered sequence.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

1 Use analysis data and parameters s ; c; : : : to compute “perceived
inferiorities” xi 2 [0:0; 1:0] of each of N possible moves. Let
ai = 1� xi .

(x1 = 0:0 � x2 � x3 � � � � � xN ) � (a1 = 1:0 � a2 � � � � � aN � 0)

2 For a fixed function h , solve h(pi )
h(p1) = ai subject to

PN
i=1 pi = 1:

3 It suffices to compute p1; then pi = h�1(aih(p1)) is relatively easy.

4 Model uses ai = e�(
�i
s )

c
, where �i is the scaled difference in value

between the best move and the i -th best move. Also fairly cheap.

5 But y = p1 = f (x ) may require expensive iterative approximation.
6 Note f is symmetric, so x can be an ordered sequence.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

1 Use analysis data and parameters s ; c; : : : to compute “perceived
inferiorities” xi 2 [0:0; 1:0] of each of N possible moves. Let
ai = 1� xi .

(x1 = 0:0 � x2 � x3 � � � � � xN ) � (a1 = 1:0 � a2 � � � � � aN � 0)

2 For a fixed function h , solve h(pi )
h(p1) = ai subject to

PN
i=1 pi = 1:

3 It suffices to compute p1; then pi = h�1(aih(p1)) is relatively easy.

4 Model uses ai = e�(
�i
s )

c
, where �i is the scaled difference in value

between the best move and the i -th best move. Also fairly cheap.
5 But y = p1 = f (x ) may require expensive iterative approximation.

6 Note f is symmetric, so x can be an ordered sequence.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

1 Use analysis data and parameters s ; c; : : : to compute “perceived
inferiorities” xi 2 [0:0; 1:0] of each of N possible moves. Let
ai = 1� xi .

(x1 = 0:0 � x2 � x3 � � � � � xN ) � (a1 = 1:0 � a2 � � � � � aN � 0)

2 For a fixed function h , solve h(pi )
h(p1) = ai subject to

PN
i=1 pi = 1:

3 It suffices to compute p1; then pi = h�1(aih(p1)) is relatively easy.

4 Model uses ai = e�(
�i
s )

c
, where �i is the scaled difference in value

between the best move and the i -th best move. Also fairly cheap.
5 But y = p1 = f (x ) may require expensive iterative approximation.
6 Note f is symmetric, so x can be an ordered sequence.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi =
aiP
i ai

, works poorly.

2 Much better is h(p) = 1
log(1=p) .

3 Gives pi = pbi
1 , where bi = 1=ai =

1
1�xi

.
4 Problem: Given y and b1; : : : ; bN , find p such that

pb1 + pb2 + � � �+ pbN = y :

5 For N = 1, simply p = b
p

y . So this generalizes taking roots.
6 We have y = 1 and b1 = 1. Can this be solved without iteration?
7 Also: Current Expansion uses data for each depth d .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi =
aiP
i ai

, works poorly.

2 Much better is h(p) = 1
log(1=p) .

3 Gives pi = pbi
1 , where bi = 1=ai =

1
1�xi

.
4 Problem: Given y and b1; : : : ; bN , find p such that

pb1 + pb2 + � � �+ pbN = y :

5 For N = 1, simply p = b
p

y . So this generalizes taking roots.
6 We have y = 1 and b1 = 1. Can this be solved without iteration?
7 Also: Current Expansion uses data for each depth d .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi =
aiP
i ai

, works poorly.

2 Much better is h(p) = 1
log(1=p) .

3 Gives pi = pbi
1 , where bi = 1=ai =

1
1�xi

.

4 Problem: Given y and b1; : : : ; bN , find p such that

pb1 + pb2 + � � �+ pbN = y :

5 For N = 1, simply p = b
p

y . So this generalizes taking roots.
6 We have y = 1 and b1 = 1. Can this be solved without iteration?
7 Also: Current Expansion uses data for each depth d .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi =
aiP
i ai

, works poorly.

2 Much better is h(p) = 1
log(1=p) .

3 Gives pi = pbi
1 , where bi = 1=ai =

1
1�xi

.
4 Problem: Given y and b1; : : : ; bN , find p such that

pb1 + pb2 + � � �+ pbN = y :

5 For N = 1, simply p = b
p

y . So this generalizes taking roots.
6 We have y = 1 and b1 = 1. Can this be solved without iteration?
7 Also: Current Expansion uses data for each depth d .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi =
aiP
i ai

, works poorly.

2 Much better is h(p) = 1
log(1=p) .

3 Gives pi = pbi
1 , where bi = 1=ai =

1
1�xi

.
4 Problem: Given y and b1; : : : ; bN , find p such that

pb1 + pb2 + � � �+ pbN = y :

5 For N = 1, simply p = b
p

y . So this generalizes taking roots.

6 We have y = 1 and b1 = 1. Can this be solved without iteration?
7 Also: Current Expansion uses data for each depth d .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi =
aiP
i ai

, works poorly.

2 Much better is h(p) = 1
log(1=p) .

3 Gives pi = pbi
1 , where bi = 1=ai =

1
1�xi

.
4 Problem: Given y and b1; : : : ; bN , find p such that

pb1 + pb2 + � � �+ pbN = y :

5 For N = 1, simply p = b
p

y . So this generalizes taking roots.
6 We have y = 1 and b1 = 1. Can this be solved without iteration?

7 Also: Current Expansion uses data for each depth d .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

1 The simple function h(p) = p, so pi =
aiP
i ai

, works poorly.

2 Much better is h(p) = 1
log(1=p) .

3 Gives pi = pbi
1 , where bi = 1=ai =

1
1�xi

.
4 Problem: Given y and b1; : : : ; bN , find p such that

pb1 + pb2 + � � �+ pbN = y :

5 For N = 1, simply p = b
p

y . So this generalizes taking roots.
6 We have y = 1 and b1 = 1. Can this be solved without iteration?
7 Also: Current Expansion uses data for each depth d .



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

1 Suppose x = (0:0; 0:0; 0:0; 0:0; 1:0; 1:0; : : : ; 1:0).
2 This means four equal-optimal moves, all others lose instantly.

3 The model will give p1 = p2 = p3 = p4 = 0:25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi �! 1:0;
@f
@xi

�! 0:

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j ;
@f
@xj

<
@f
@xi

:

(Not quite what was meant. . . )
6 “Universal Guess” : In the first Taylor term, use

@f
@xi

� 1
i
ai =

1
i
(1� xi ):



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

1 Suppose x = (0:0; 0:0; 0:0; 0:0; 1:0; 1:0; : : : ; 1:0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0:25, all other pi = 0.

4 Axiom: Influence of poor moves tapers off:

As xi �! 1:0;
@f
@xi

�! 0:

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j ;
@f
@xj

<
@f
@xi

:

(Not quite what was meant. . . )
6 “Universal Guess” : In the first Taylor term, use

@f
@xi

� 1
i
ai =

1
i
(1� xi ):



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

1 Suppose x = (0:0; 0:0; 0:0; 0:0; 1:0; 1:0; : : : ; 1:0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0:25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi �! 1:0;
@f
@xi

�! 0:

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j ;
@f
@xj

<
@f
@xi

:

(Not quite what was meant. . . )
6 “Universal Guess” : In the first Taylor term, use

@f
@xi

� 1
i
ai =

1
i
(1� xi ):



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

1 Suppose x = (0:0; 0:0; 0:0; 0:0; 1:0; 1:0; : : : ; 1:0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0:25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi �! 1:0;
@f
@xi

�! 0:

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j ;
@f
@xj

<
@f
@xi

:

(Not quite what was meant. . . )

6 “Universal Guess” : In the first Taylor term, use
@f
@xi

� 1
i
ai =

1
i
(1� xi ):



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

1 Suppose x = (0:0; 0:0; 0:0; 0:0; 1:0; 1:0; : : : ; 1:0).
2 This means four equal-optimal moves, all others lose instantly.
3 The model will give p1 = p2 = p3 = p4 = 0:25, all other pi = 0.
4 Axiom: Influence of poor moves tapers off:

As xi �! 1:0;
@f
@xi

�! 0:

5 Axiom: Influence of lower-ranked moves becomes less:

For i < j ;
@f
@xj

<
@f
@xi

:

(Not quite what was meant. . . )
6 “Universal Guess” : In the first Taylor term, use

@f
@xi

� 1
i
ai =

1
i
(1� xi ):



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

2 Grid needs less precision also for higher coordinates i .
3 Given x = (x1; : : : ; xN ), how to define “nearest” gridpoint

u = (u1; : : : ;uN )?
4 How to define a good bounding set u ; v ; : : : ?
5 How to make the computation of nearby gridpoints efficient?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i .

3 Given x = (x1; : : : ; xN ), how to define “nearest” gridpoint
u = (u1; : : : ;uN )?

4 How to define a good bounding set u ; v ; : : : ?
5 How to make the computation of nearby gridpoints efficient?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i .
3 Given x = (x1; : : : ; xN ), how to define “nearest” gridpoint

u = (u1; : : : ;uN )?

4 How to define a good bounding set u ; v ; : : : ?
5 How to make the computation of nearby gridpoints efficient?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i .
3 Given x = (x1; : : : ; xN ), how to define “nearest” gridpoint

u = (u1; : : : ;uN )?
4 How to define a good bounding set u ; v ; : : : ?

5 How to make the computation of nearby gridpoints efficient?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

1 Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
2 Grid needs less precision also for higher coordinates i .
3 Given x = (x1; : : : ; xN ), how to define “nearest” gridpoint

u = (u1; : : : ;uN )?
4 How to define a good bounding set u ; v ; : : : ?
5 How to make the computation of nearby gridpoints efficient?



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given x = (x1; x2; : : : ; xN ),
1 Bounds x+ and x� are well-defined by rounding each coordinate

up/down to a gridpoint.

2 “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from x+ and x�. Always u1 = 0:0 = x+1 = x�1 .

3 Start with x�, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until x� values come above it.

5 Like a heuristic for solving Knapsack problems.
6 Refinements which we have not yet fully explored include working

backward from i = N (too).
7 Combine with “universal gradient” idea, or even ignore said idea.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given x = (x1; x2; : : : ; xN ),
1 Bounds x+ and x� are well-defined by rounding each coordinate

up/down to a gridpoint.
2 “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from x+ and x�. Always u1 = 0:0 = x+1 = x�1 .

3 Start with x�, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until x� values come above it.

5 Like a heuristic for solving Knapsack problems.
6 Refinements which we have not yet fully explored include working

backward from i = N (too).
7 Combine with “universal gradient” idea, or even ignore said idea.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given x = (x1; x2; : : : ; xN ),
1 Bounds x+ and x� are well-defined by rounding each coordinate

up/down to a gridpoint.
2 “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from x+ and x�. Always u1 = 0:0 = x+1 = x�1 .
3 Start with x�, but “round up” when the rounding-down deficiency

exceeds some weighted threshold.

4 Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until x� values come above it.

5 Like a heuristic for solving Knapsack problems.
6 Refinements which we have not yet fully explored include working

backward from i = N (too).
7 Combine with “universal gradient” idea, or even ignore said idea.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given x = (x1; x2; : : : ; xN ),
1 Bounds x+ and x� are well-defined by rounding each coordinate

up/down to a gridpoint.
2 “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from x+ and x�. Always u1 = 0:0 = x+1 = x�1 .
3 Start with x�, but “round up” when the rounding-down deficiency

exceeds some weighted threshold.
4 Once you have “rounded up,” you can use same gridpoint value, but

cannot “round down” again until x� values come above it.

5 Like a heuristic for solving Knapsack problems.
6 Refinements which we have not yet fully explored include working

backward from i = N (too).
7 Combine with “universal gradient” idea, or even ignore said idea.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given x = (x1; x2; : : : ; xN ),
1 Bounds x+ and x� are well-defined by rounding each coordinate

up/down to a gridpoint.
2 “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from x+ and x�. Always u1 = 0:0 = x+1 = x�1 .
3 Start with x�, but “round up” when the rounding-down deficiency

exceeds some weighted threshold.
4 Once you have “rounded up,” you can use same gridpoint value, but

cannot “round down” again until x� values come above it.
5 Like a heuristic for solving Knapsack problems.

6 Refinements which we have not yet fully explored include working
backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given x = (x1; x2; : : : ; xN ),
1 Bounds x+ and x� are well-defined by rounding each coordinate

up/down to a gridpoint.
2 “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from x+ and x�. Always u1 = 0:0 = x+1 = x�1 .
3 Start with x�, but “round up” when the rounding-down deficiency

exceeds some weighted threshold.
4 Once you have “rounded up,” you can use same gridpoint value, but

cannot “round down” again until x� values come above it.
5 Like a heuristic for solving Knapsack problems.
6 Refinements which we have not yet fully explored include working

backward from i = N (too).

7 Combine with “universal gradient” idea, or even ignore said idea.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given x = (x1; x2; : : : ; xN ),
1 Bounds x+ and x� are well-defined by rounding each coordinate

up/down to a gridpoint.
2 “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from x+ and x�. Always u1 = 0:0 = x+1 = x�1 .
3 Start with x�, but “round up” when the rounding-down deficiency

exceeds some weighted threshold.
4 Once you have “rounded up,” you can use same gridpoint value, but

cannot “round down” again until x� values come above it.
5 Like a heuristic for solving Knapsack problems.
6 Refinements which we have not yet fully explored include working

backward from i = N (too).
7 Combine with “universal gradient” idea, or even ignore said idea.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. . .

1 We ran experiments under a randomized distribution D� in which
r 2 [xi�1; 1] is sampled uniformly and

xi = xi�1 + �(r � xi�1) (capped at xi = 1:0):

2 That is, we make each move randomly slightly inferior to the
previous one. We choose � according to N , to make expectation
xi � 1:0 as i nears N .

3 Results under D� are good: 3-place precision on �(: : : ) given
2-place to 1-place precision on grid.

4 Results on real chess data. . . still a work in progress.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. . .

1 We ran experiments under a randomized distribution D� in which
r 2 [xi�1; 1] is sampled uniformly and

xi = xi�1 + �(r � xi�1) (capped at xi = 1:0):

2 That is, we make each move randomly slightly inferior to the
previous one. We choose � according to N , to make expectation
xi � 1:0 as i nears N .

3 Results under D� are good: 3-place precision on �(: : : ) given
2-place to 1-place precision on grid.

4 Results on real chess data. . . still a work in progress.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. . .

1 We ran experiments under a randomized distribution D� in which
r 2 [xi�1; 1] is sampled uniformly and

xi = xi�1 + �(r � xi�1) (capped at xi = 1:0):

2 That is, we make each move randomly slightly inferior to the
previous one. We choose � according to N , to make expectation
xi � 1:0 as i nears N .

3 Results under D� are good: 3-place precision on �(: : : ) given
2-place to 1-place precision on grid.

4 Results on real chess data. . . still a work in progress.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. . .

1 We ran experiments under a randomized distribution D� in which
r 2 [xi�1; 1] is sampled uniformly and

xi = xi�1 + �(r � xi�1) (capped at xi = 1:0):

2 That is, we make each move randomly slightly inferior to the
previous one. We choose � according to N , to make expectation
xi � 1:0 as i nears N .

3 Results under D� are good: 3-place precision on �(: : : ) given
2-place to 1-place precision on grid.

4 Results on real chess data. . .

still a work in progress.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. . .

1 We ran experiments under a randomized distribution D� in which
r 2 [xi�1; 1] is sampled uniformly and

xi = xi�1 + �(r � xi�1) (capped at xi = 1:0):

2 That is, we make each move randomly slightly inferior to the
previous one. We choose � according to N , to make expectation
xi � 1:0 as i nears N .

3 Results under D� are good: 3-place precision on �(: : : ) given
2-place to 1-place precision on grid.

4 Results on real chess data. . . still a work in progress.



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results for NN+UG



Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results for Just NN


