Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Efficient Memoization for Approximate Function

Evaluation over Sequence Arguments
AAIM 2014

Tamal Biswas and Kenneth W. Regan
University at Buffalo (SUNY)

9 July 2014

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).

© Need to evaluate y = f(z) for M = millions of z.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).
© Need to evaluate y = f(z) for M = millions of z.

© Each eval of f is expensive. Many repetitive evals.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).
© Need to evaluate y = f(z) for M = millions of z.

© Each eval of f is expensive. Many repetitive evals.

© However, the target function u(yi, ..., yum) tolerates
approximation:

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).
© Need to evaluate y = f(z) for M = millions of z.

© Each eval of f is expensive. Many repetitive evals.

© However, the target function u(yi, ..., yum) tolerates

approximation:
e Could be linear: p = sum;a;y;. For mean or quantile statistics.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).

© Need to evaluate y = f(z) for M = millions of z.

© Each eval of f is expensive. Many repetitive evals.

© However, the target function u(yi, ..., yum) tolerates
approximation:

e Could be linear: p = sum;a;y;. For mean or quantile statistics.
o Could be non-linear but well-behaved, e.g., logistic regression.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).
© Need to evaluate y = f(z) for M = millions of z.

© Each eval of f is expensive. Many repetitive evals.

© However, the target function u(yi, ..., yum) tolerates

approximation:

e Could be linear: p = sum;a;y;. For mean or quantile statistics.
o Could be non-linear but well-behaved, e.g., logistic regression.

© Two other helps: f is smooth and bounded.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Problem

© Space of points z = (z1,...,zy), where N is not small (N = 50).

© Need to evaluate y = f(z) for M = millions of z.

© Each eval of f is expensive. Many repetitive evals.

© However, the target function u(yi, ..., yum) tolerates
approximation:

e Could be linear: p = sum;a;y;. For mean or quantile statistics.
o Could be non-linear but well-behaved, e.g., logistic regression.

© Two other helps: f is smooth and bounded.

© And we need good approximation to p(---) (only) under
distributions D(z) controlled by a few model-specific parameters,

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given z not in the
grid, several ideas:

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given z not in the
grid, several ideas:

© Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given z not in the
grid, several ideas:
© Find nearest neighbor u, use f(u) as y. Not good enough
approximation.
©Q Write z = Y brug, use y = > brf(uk).

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given z not in the
grid, several ideas:

© Find nearest neighbor u, use f(u) as y. Not good enough
approximation.

© Write z = Y, brug, use y = > buf(ux). Seems better. But N 1is
not small.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given z not in the
grid, several ideas:
© Find nearest neighbor u, use f(u) as y. Not good enough
approximation.
© Write z = Y, brug, use y = > buf(ux). Seems better. But N 1is
not small.
© Use any neighbor u and do Taylor expansion.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Euclidean Grid Case

Pre-compute—or memoize—f(u) for gridpoints u. Given z not in the
grid, several ideas:
© Find nearest neighbor u, use f(u) as y. Not good enough
approximation.
© Write z = Y, brug, use y = > buf(ux). Seems better. But N 1is
not small.
© Use any neighbor u and do Taylor expansion.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

82f
auiau]‘

f(z) = f(u)+ Z(xi —) (u) + = > (@ — w) (g — w)

© Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

82f
auiau]‘

f(z) = f(u)+ Z(xi —) (u) + = > (@ — w) (g — w)

© Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

© Problem is that now we need to memoize all f;(u) = g—i(u). 50x
datal!

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

2
Fl2) = F(w) + (s~ w) () + L S~)y —) 5o

auiau]‘

© Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

© Problem is that now we need to memoize all f;(u) = g—i(u). 50x
datal!

© Main Question: Can we “cheat” by shortcutting the partials?

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

82f
3u¢3u]‘

f(z) = f(u)+ Z(xi —) (u) + = > (@ — w) (g — w)

© Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

© Problem is that now we need to memoize all f;(u) = g—i(u). 50x
datal!

© Main Question: Can we “cheat” by shortcutting the partials?
© If f were linear, obviously gTJ; = constant.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Taylor Expansion

82
-
3u¢3u]‘

f(z) = f(u)+ Z(xi - ui)aTci(U) + o> (@ — w)(g — w)

© Given that f is fairly smooth as well as bounded, and the grid is
fine enough, we can ignore quadratic and higher terms.

© Problem is that now we need to memoize all f;(u) = g—i(u). 50x
datal!

© Main Question: Can we “cheat” by shortcutting the partials?
© If f were linear, obviously gTJ; = constant.
© What if the grid is warped “similarly” to f?

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

© Domain: A set of decision-making situations ¢.
Chess game turns

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

© Domain: A set of decision-making situations ¢.
Chess game turns

© Inputs: Values v; for every option at turn t.
Computer values of moves m;

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

© Domain: A set of decision-making situations ¢.
Chess game turns

© Inputs: Values v; for every option at turn t.
Computer values of moves m;

© Parameters: s, c,... denoting skills and levels.
Trained correspondence to chess Elo rating &

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

© Domain: A set of decision-making situations ¢.
Chess game turns

© Inputs: Values v; for every option at turn t.
Computer values of moves m;

© Parameters: s, c,... denoting skills and levels.
Trained correspondence to chess Elo rating &

© Defines fallible agent P(s,c,...).

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

© Domain: A set of decision-making situations ¢.
Chess game turns

© Inputs: Values v; for every option at turn t.
Computer values of moves m;

© Parameters: s, c,... denoting skills and levels.
Trained correspondence to chess Elo rating &

© Defines fallible agent P(s,c,...).

© Main Output: Probabilities p;; for P(s, c,...) to select option 7 at
time ¢.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Context: Decision-Making Model at Chess

Domain: A set of decision-making situations t.
Chess game turns

Inputs: Values v; for every option at turn ¢.
Computer values of moves m;

Parameters: s, c,... denoting skills and levels.
Trained correspondence to chess Elo rating &

Defines fallible agent P(s,c,...).

Main Output: Probabilities p;; for P(s,c,...) to select option 7 at
time ¢.

@ Derived Outputs:

o Aggregate statistics: move-match MM, average error AE, ...
o Projected confidence intervals for those statistics.
o “Intrinsic Performance Ratings” (IPR’s).

o6 o0 o o

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

© Use analysis data and parameters s, c,... to compute “perceived
inferiorities” x; € [0.0,1.0] of each of N possible moves. Let
a; =1—z;.

(@=00<m<om<- <ay)=(m=10>a> > ay~0)

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

© Use analysis data and parameters s, c,... to compute “perceived
inferiorities” x; € [0.0,1.0] of each of N possible moves. Let
a; =1—z;.

(@ =00<m,<z<-<ay)=(a=10>a> > ay~0)

@ For a fixed function h, solve Z((Z’Z)) = a; subject to ¥ p; = 1.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

© Use analysis data and parameters s, c,... to compute “perceived
inferiorities” x; € [0.0,1.0] of each of N possible moves. Let
a;, =1—z;.

(@=00<m<om<- <ay)=(m=10>a> > ay~0)

h(p:)
h(p1)

@ It suffices to compute p;; then p; = h=1(a;h(p1)) is relatively easy.

© For a fixed function h, solve = a; subject to vazl p; = 1.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

© Use analysis data and parameters s, c,... to compute “perceived
inferiorities” x; € [0.0,1.0] of each of N possible moves. Let
a;, =1—z;.

(@=00<m<om<- <ay)=(m=10>a> > ay~0)

h(p:)
h(p1)

@ It suffices to compute p;; then p; = h=1(a;h(p1)) is relatively easy.

© For a fixed function h, solve = a; subject to vazl p; = 1.

61 c . . .
© Model uses a; = e (%) , where §; is the scaled difference in value
between the best move and the 2-th best move. Also fairly cheap.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

© Use analysis data and parameters s, c,... to compute “perceived
inferiorities” x; € [0.0,1.0] of each of N possible moves. Let
a;, =1—z;.

(@=00<m<om<- <ay)=(m=10>a> > ay~0)

h(p:)
h(p1)

@ It suffices to compute p;; then p; = h=1(a;h(p1)) is relatively easy.

© For a fixed function h, solve = a; subject to vazl p; = 1.

61 c . . .
© Model uses a; = e (%) , where §; is the scaled difference in value
between the best move and the 2-th best move. Also fairly cheap.

© But y = p; = f(z) may require expensive iterative approximation.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

How the Model Operates

© Use analysis data and parameters s, c,... to compute “perceived
inferiorities” x; € [0.0,1.0] of each of N possible moves. Let
a;, =1—z;.

(@=00<m<om<- <ay)=(m=10>a> > ay~0)

h(p:)
h(p1)

@ It suffices to compute p;; then p; = h=1(a;h(p1)) is relatively easy.

© For a fixed function h, solve = a; subject to vazl p; = 1.

61 c . . .
© Model uses a; = e (%) , where §; is the scaled difference in value
between the best move and the 2-th best move. Also fairly cheap.

© But y = p; = f(z) may require expensive iterative approximation.

© Note f is symmetric, so can be an ordered sequence.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

273

@ The simple function h(p) = p, so p; = S works poorly.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

273

@ The simple function h(p) = p, so p; = S works poorly.

© Much better is h(p) = m.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

273

@ The simple function h(p) = p, so p; = S works poorly.

© Much better is h(p) = m.

© Gives p; = pfl, where b; = 1/a; = 1 L

—z; .

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

273

@ The simple function h(p) = p, so p; = S works poorly.

© Much better is h(p) = m.

© Gives p; = pfl, where b; = 1/a; = +*

l—z;°

© Problem: Given y and bq,..., by, find p such that

P A p% 4™ =y

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

273

@ The simple function h(p) = p, so p; = S works poorly.

© Much better is h(p) = m.
Q@ Gives p; = p!*, where b; = 1/a; = 15%.
© Problem: Given y and bq,..., by, find p such that

P A p% 4™ =y

@ For N =1, simply p = \/y. So this generalizes taking roots.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

273

@ The simple function h(p) = p, so p; = S works poorly.

© Much better is h(p) = m.
Q@ Gives p; = p!*, where b; = 1/a; = 15%.
© Problem: Given y and bq,..., by, find p such that

P A p% 4™ =y

@ For N =1, simply p = \/y. So this generalizes taking roots.
@ We have y = 1 and b; = 1. Can this be solved without iteration?

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Side Note and Pure-Math Problem

273

@ The simple function h(p) = p, so p; = S works poorly.

© Much better is h(p) = m.
Q@ Gives p; = p!*, where b; = 1/a; = 15%.
© Problem: Given y and bq,..., by, find p such that

P A p% 4™ =y

@ For N =1, simply p = \/y. So this generalizes taking roots.
@ We have y = 1 and b; = 1. Can this be solved without iteration?
@ Also: Current Expansion uses data for each depth d.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

© Suppose z = (0.0,0.0,0.0,0.0,1.0,1.0,...,1.0).
© This means four equal-optimal moves, all others lose instantly.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

© Suppose z = (0.0,0.0,0.0,0.0,1.0,1.0,...,1.0).
© This means four equal-optimal moves, all others lose instantly.
© The model will give p; = py = p3 = ps = 0.25, all other p; = 0.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

© Suppose z = (0.0,0.0,0.0,0.0,1.0,1.0,...,1.0).

© This means four equal-optimal moves, all others lose instantly.
© The model will give p; = py = p3 = ps = 0.25, all other p; = 0.
© Axiom: Influence of poor moves tapers off:

0
As z; — 1.0, —f — 0.
8:::@-

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

© Suppose z = (0.0,0.0,0.0,0.0,1.0,1.0,...,1.0).

© This means four equal-optimal moves, all others lose instantly.
© The model will give p; = py = p3 = ps = 0.25, all other p; = 0.
© Axiom: Influence of poor moves tapers off:

of

Asz; — 1.0, — — 0.
8:::@-

@ Axiom: Influence of lower-ranked moves becomes less:

.. 0 0
For 1 < 7, %<%
gl 1

(Not quite what was meant. . .)

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Axioms and Properties

© Suppose z = (0.0,0.0,0.0,0.0,1.0,1.0,...,1.0).

© This means four equal-optimal moves, all others lose instantly.
© The model will give p; = py = p3 = ps = 0.25, all other p; = 0.
© Axiom: Influence of poor moves tapers off:

0
As z; — 1.0, —f — 0.
8:::@-

@ Axiom: Influence of lower-ranked moves becomes less:

.. Of of
F —— <
or 1 <7, ij<8m¢
(Not quite what was meant. . .)
© “Universal Guess”: In the first Taylor term, use

of 1 1
xS = (1 -).
oz, 7%~ 71— =)

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

WINAAAAY

© Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

WINAAAAY

© Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

© Grid needs less precision also for higher coordinates 2.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

AN
‘un\“ (11

iy

¥

il
=

© Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
© Grid needs less precision also for higher coordinates 2.

© Given z = (zy,...,2y), how to define “nearest” gridpoint
u=(u,...,un)?

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

AN
‘un\“ (11

iy

¥

il
=

© Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
© Grid needs less precision also for higher coordinates 2.

© Given z = (zy,...,2y), how to define “nearest” gridpoint
u=(u,...,un)?

© How to define a good bounding set u,v,...?

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

The Tapered Grid

AN
‘un\“ (11

iy

¥

il
=

© Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
© Grid needs less precision also for higher coordinates 2.

© Given z = (zy,...,2y), how to define “nearest” gridpoint
u=(u,...,un)?
© How to define a good bounding set u,v,...?

© How to make the computation of nearby gridpoints efficient?

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),
© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence
using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

2]
o
o

Bounds z™ and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

“Nearest Neighbor” is defined by a nondecreasing sequence
using only values from z+ and z~. Always u; = 0.0 = z;” = z; .
Start with =, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

© Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.

© Like a heuristic for solving Knapsack problems.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.

()
© Like a heuristic for solving Knapsack problems.
o

Refinements which we have not yet fully explored include working
backward from 72 = N (too).

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Strategies

Given z = (21, 22,...,2ZN),

© Bounds z7 and z~ are well-defined by rounding each coordinate
up/down to a gridpoint.

© “Nearest Neighbor” is defined by a nondecreasing sequence

using only values from z+ and z~. Always u; = 0.0 = z;” = z; .

© Start with z—, but “round up” when the rounding-down deficiency
exceeds some weighted threshold.

© Once you have “rounded up,” you can use same gridpoint value, but
cannot “round down” again until 2~ values come above it.

© Like a heuristic for solving Knapsack problems.

© Refinements which we have not yet fully explored include working
backward from 72 = N (too).

@ Combine with “universal gradient” idea, or even ignore said idea.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. ..

© We ran experiments under a randomized distribution D, in which
r € [z;_1, 1] is sampled uniformly and

z, = xi—1 +€(r —zi—1) (capped at z; = 1.0).

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. ..

© We ran experiments under a randomized distribution D, in which
r € [z;_1, 1] is sampled uniformly and

z, = xi—1 +€(r —zi—1) (capped at z; = 1.0).
© That is, we make each move randomly slightly inferior to the

previous one. We choose € according to N, to make expectation
z; ~ 1.0 as 7 nears N.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. ..

© We ran experiments under a randomized distribution D, in which
r € [z;_1, 1] is sampled uniformly and

z, = xi—1 +€(r —zi—1) (capped at z; = 1.0).

© That is, we make each move randomly slightly inferior to the
previous one. We choose € according to N, to make expectation
z; ~ 1.0 as 7 nears N.

© Results under D, are good: 3-place precision on u(...) given
2-place to 1-place precision on grid.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. ..

© We ran experiments under a randomized distribution D, in which
r € [z;_1, 1] is sampled uniformly and

z, = xi—1 +€(r —zi—1) (capped at z; = 1.0).

© That is, we make each move randomly slightly inferior to the
previous one. We choose € according to N, to make expectation
z; ~ 1.0 as 7 nears N.

© Results under D, are good: 3-place precision on u(...) given
2-place to 1-place precision on grid.

© Results on real chess data. ..

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results So Far. ..

© We ran experiments under a randomized distribution D, in which
r € [z;_1, 1] is sampled uniformly and

z, = xi—1 +€(r —zi—1) (capped at z; = 1.0).

© That is, we make each move randomly slightly inferior to the
previous one. We choose € according to N, to make expectation
z; ~ 1.0 as 7 nears N.

© Results under D, are good: 3-place precision on u(...) given
2-place to 1-place precision on grid.

© Results on real chess data. . .still a work in progress.

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results for NN+UG

Approximation based on Universal Gradient Mapping
0.01 T T — T T T

0.008 : Co 1

Deviation from Accurate

o008 ., B S e e

-0.008 . ‘ E
-0.01 i I I 1 1 I : I
0 1000 2000 3000 4000 5000 6000 7000 8000

Sample #

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

Results for Just NN

Approximation based on Nearest Neighbor Mapping
T T T T T

0.02 T
0.015

0.01

0.005 f

-0.005

Deviation from Accurate
o

-0.01

-0.015

-0.02

1 1 1 ° 1 o 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000
Sample #

