

Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

AAIM 2014

Tamal Biswas and Kenneth W. Regan
University at Buffalo (SUNY)

9 July 2014

The Problem

- ① Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).

The Problem

- ① Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).
- ② Need to evaluate $y = f(x)$ for $M = \text{millions of } x$.

The Problem

- ➊ Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).
- ➋ Need to evaluate $y = f(x)$ for $M = \text{millions}$ of x .
- ➌ Each eval of f is **expensive**. Many repetitive evals.

The Problem

- ① Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).
- ② Need to evaluate $y = f(x)$ for $M = \text{millions}$ of x .
- ③ Each eval of f is **expensive**. Many repetitive evals.
- ④ However, the target function $\mu(y_1, \dots, y_M)$ tolerates approximation:

The Problem

- ➊ Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).
- ➋ Need to evaluate $y = f(x)$ for $M = \text{millions}$ of x .
- ➌ Each eval of f is **expensive**. Many repetitive evals.
- ➍ However, the target function $\mu(y_1, \dots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = \sum_j a_j y_j$. For mean or quantile statistics.

The Problem

- ① Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).
- ② Need to evaluate $y = f(x)$ for $M = \text{millions}$ of x .
- ③ Each eval of f is **expensive**. Many repetitive evals.
- ④ However, the target function $\mu(y_1, \dots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = \sum_j a_j y_j$. For mean or quantile statistics.
 - Could be non-linear but well-behaved, e.g., logistic regression.

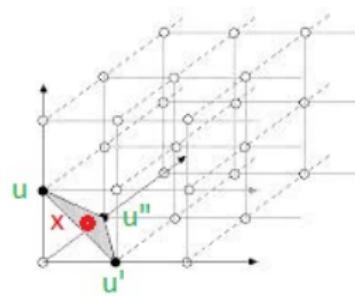
The Problem

- ① Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).
- ② Need to evaluate $y = f(x)$ for $M = \text{millions}$ of x .
- ③ Each eval of f is **expensive**. Many repetitive evals.
- ④ However, the target function $\mu(y_1, \dots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = \sum_j a_j y_j$. For mean or quantile statistics.
 - Could be non-linear but well-behaved, e.g., logistic regression.
- ⑤ Two other helps: f is smooth and bounded.

The Problem

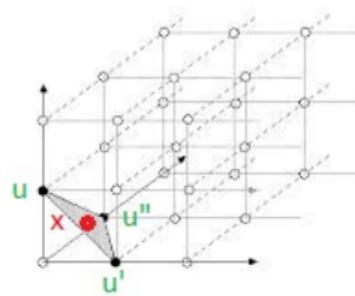
- ① Space of points $x = (x_1, \dots, x_N)$, where N is not small ($N \approx 50$).
- ② Need to evaluate $y = f(x)$ for $M = \text{millions}$ of x .
- ③ Each eval of f is **expensive**. Many repetitive evals.
- ④ However, the target function $\mu(y_1, \dots, y_M)$ tolerates approximation:
 - Could be linear: $\mu = \sum_j a_j y_j$. For mean or quantile statistics.
 - Could be non-linear but well-behaved, e.g., logistic regression.
- ⑤ Two other helps: f is smooth and bounded.
- ⑥ And we need good approximation to $\mu(\dots)$ (only) under distributions $D(x)$ controlled by a few model-specific parameters,

The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$ for gridpoints u . Given x not in the grid, several ideas:

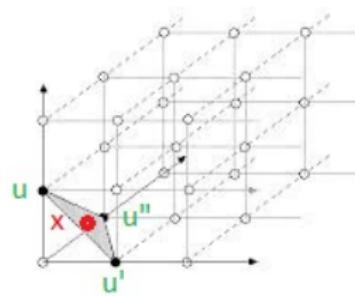
The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$ for gridpoints u . Given x not in the grid, several ideas:

- ① Find nearest neighbor u , use $f(u)$ as y . *Not good enough approximation.*

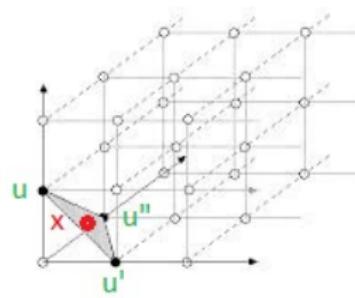
The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$ for gridpoints u . Given x not in the grid, several ideas:

- ① Find nearest neighbor u , use $f(u)$ as y . *Not good enough approximation.*
- ② Write $x = \sum_k b_k u_k$, use $y = \sum_k b_k f(u_k)$.

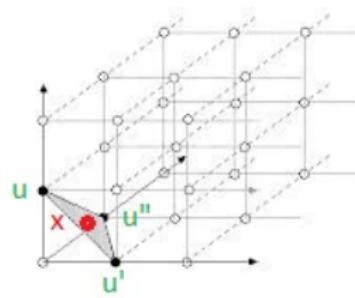
The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$ for gridpoints u . Given x not in the grid, several ideas:

- ① Find nearest neighbor u , use $f(u)$ as y . *Not good enough approximation.*
- ② Write $x = \sum_k b_k u_k$, use $y = \sum_k b_k f(u_k)$. *Seems better. But N is not small.*

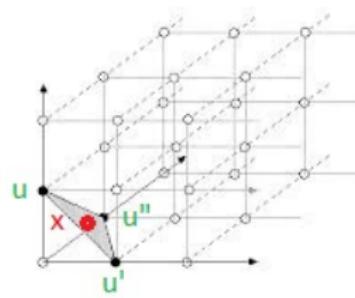
The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$ for gridpoints u . Given x not in the grid, several ideas:

- ① Find nearest neighbor u , use $f(u)$ as y . *Not good enough approximation.*
- ② Write $x = \sum_k b_k u_k$, use $y = \sum_k b_k f(u_k)$. *Seems better. But N is not small.*
- ③ Use any neighbor u and do Taylor expansion.

The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$ for gridpoints u . Given x not in the grid, several ideas:

- ① Find nearest neighbor u , use $f(u)$ as y . *Not good enough approximation.*
- ② Write $x = \sum_k b_k u_k$, use $y = \sum_k b_k f(u_k)$. *Seems better. But N is not small.*
- ③ Use any neighbor u and do Taylor expansion.

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. **50x data!**

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. **50x data!**
- ③ **Main Question:** Can we “cheat” by shortcutting the partials?

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. **50x data!**
- ③ **Main Question:** Can we “cheat” by shortcircuiting the partials?
- ④ If f were linear, obviously $\frac{\partial f}{\partial x_i} = \text{constant}$.

Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that f is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all $f_i(u) = \frac{\partial f}{\partial x_i}(u)$. **50x data!**
- ③ **Main Question:** Can we “cheat” by shortcutting the partials?
- ④ If f were linear, obviously $\frac{\partial f}{\partial x_i} = \text{constant}$.
- ⑤ What if the grid is warped “similarly” to f ?

Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations t .
Chess game turns

Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations t .
Chess game turns
- ② Inputs: Values v_i for every option at turn t .
Computer values of moves m_i

Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations t .
Chess game turns
- ② Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ③ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E

Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations t .
Chess game turns
- ② Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ③ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E
- ④ Defines *fallible agent* $P(s, c, \dots)$.

Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations t .
Chess game turns
- ② Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ③ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E
- ④ Defines *fallible agent* $P(s, c, \dots)$.
- ⑤ Main Output: Probabilities $p_{t,i}$ for $P(s, c, \dots)$ to select option i at time t .

Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations t .
Chess game turns
- ② Inputs: Values v_i for every option at turn t .
Computer values of moves m_i
- ③ Parameters: s, c, \dots denoting skills and levels.
Trained correspondence to chess Elo rating E
- ④ Defines *fallible agent* $P(s, c, \dots)$.
- ⑤ Main Output: Probabilities $p_{t,i}$ for $P(s, c, \dots)$ to select option i at time t .
- ⑥ Derived Outputs:
 - Aggregate statistics: *move-match* MM, *average error* AE, ...
 - Projected confidence intervals for those statistics.
 - “Intrinsic Performance Ratings” (IPR’s).

How the Model Operates

- ① Use analysis data and parameters s, c, \dots to compute “perceived inferiorities” $x_i \in [0.0, 1.0]$ of each of N possible moves. Let $a_i = 1 - x_i$.

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

How the Model Operates

- ① Use analysis data and parameters s, c, \dots to compute “perceived inferiorities” $x_i \in [0.0, 1.0]$ of each of N possible moves. Let $a_i = 1 - x_i$.

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function h , solve $\frac{h(p_i)}{h(p_1)} = a_i$ subject to $\sum_{i=1}^N p_i = 1$.

How the Model Operates

- ① Use analysis data and parameters s, c, \dots to compute “perceived inferiorities” $x_i \in [0.0, 1.0]$ of each of N possible moves. Let $a_i = 1 - x_i$.

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function h , solve $\frac{h(p_i)}{h(p_1)} = a_i$ subject to $\sum_{i=1}^N p_i = 1$.
- ③ It suffices to compute p_1 ; then $p_i = h^{-1}(a_i h(p_1))$ is relatively easy.

How the Model Operates

- ① Use analysis data and parameters s, c, \dots to compute “perceived inferiorities” $x_i \in [0.0, 1.0]$ of each of N possible moves. Let $a_i = 1 - x_i$.

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function h , solve $\frac{h(p_i)}{h(p_1)} = a_i$ subject to $\sum_{i=1}^N p_i = 1$.
- ③ It suffices to compute p_1 ; then $p_i = h^{-1}(a_i h(p_1))$ is relatively easy.
- ④ Model uses $a_i = e^{-(\frac{\delta_i}{s})^c}$, where δ_i is the scaled difference in value between the best move and the i -th best move. Also fairly cheap.

How the Model Operates

- ① Use analysis data and parameters s, c, \dots to compute “perceived inferiorities” $x_i \in [0.0, 1.0]$ of each of N possible moves. Let $a_i = 1 - x_i$.

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function h , solve $\frac{h(p_i)}{h(p_1)} = a_i$ subject to $\sum_{i=1}^N p_i = 1$.
- ③ It suffices to compute p_1 ; then $p_i = h^{-1}(a_i h(p_1))$ is relatively easy.
- ④ Model uses $a_i = e^{-(\frac{\delta_i}{s})^c}$, where δ_i is the scaled difference in value between the best move and the i -th best move. Also fairly cheap.
- ⑤ But $y = p_1 = f(x)$ may require expensive iterative approximation.

How the Model Operates

- ① Use analysis data and parameters s, c, \dots to compute “perceived inferiorities” $x_i \in [0.0, 1.0]$ of each of N possible moves. Let $a_i = 1 - x_i$.

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function h , solve $\frac{h(p_i)}{h(p_1)} = a_i$ subject to $\sum_{i=1}^N p_i = 1$.
- ③ It suffices to compute p_1 ; then $p_i = h^{-1}(a_i h(p_1))$ is **relatively easy**.
- ④ Model uses $a_i = e^{-(\frac{\delta_i}{s})^c}$, where δ_i is the *scaled* difference in value between the best move and the i -th best move. **Also fairly cheap**.
- ⑤ But $y = p_1 = f(x)$ may require expensive iterative approximation.
- ⑥ Note f is *symmetric*, so x can be an ordered sequence.

Side Note and Pure-Math Problem

- ① The simple function $h(p) = p$, so $p_i = \frac{a_i}{\sum_i a_i}$, **works poorly**.

Side Note and Pure-Math Problem

- ➊ The simple function $h(p) = p$, so $p_i = \frac{a_i}{\sum_i a_i}$, **works poorly**.
- ➋ Much better is $h(p) = \frac{1}{\log(1/p)}$.

Side Note and Pure-Math Problem

- ➊ The simple function $h(p) = p$, so $p_i = \frac{a_i}{\sum_i a_i}$, **works poorly**.
- ➋ Much better is $h(p) = \frac{1}{\log(1/p)}$.
- ➌ Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.

Side Note and Pure-Math Problem

- ① The simple function $h(p) = p$, so $p_i = \frac{a_i}{\sum_i a_i}$, **works poorly**.
- ② Much better is $h(p) = \frac{1}{\log(1/p)}$.
- ③ Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.
- ④ **Problem:** Given y and b_1, \dots, b_N , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

Side Note and Pure-Math Problem

- ① The simple function $h(p) = p$, so $p_i = \frac{a_i}{\sum_i a_i}$, **works poorly**.
- ② Much better is $h(p) = \frac{1}{\log(1/p)}$.
- ③ Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.
- ④ **Problem:** Given y and b_1, \dots, b_N , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

- ⑤ For $N = 1$, simply $p = \sqrt[b]{y}$. So this generalizes taking roots.

Side Note and Pure-Math Problem

① The simple function $h(p) = p$, so $p_i = \frac{a_i}{\sum_i a_i}$, **works poorly**.

② Much better is $h(p) = \frac{1}{\log(1/p)}$.

③ Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.

④ **Problem:** Given y and b_1, \dots, b_N , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

⑤ For $N = 1$, simply $p = \sqrt[b]{y}$. So this generalizes taking roots.

⑥ We have $y = 1$ and $b_1 = 1$. Can this be solved **without iteration**?

Side Note and Pure-Math Problem

- ① The simple function $h(p) = p$, so $p_i = \frac{a_i}{\sum_i a_i}$, **works poorly**.
- ② Much better is $h(p) = \frac{1}{\log(1/p)}$.
- ③ Gives $p_i = p_1^{b_i}$, where $b_i = 1/a_i = \frac{1}{1-x_i}$.
- ④ **Problem:** Given y and b_1, \dots, b_N , find p such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

- ⑤ For $N = 1$, simply $p = \sqrt[b]{y}$. So this generalizes taking roots.
- ⑥ We have $y = 1$ and $b_1 = 1$. Can this be solved **without iteration**?
- ⑦ Also: Current Expansion uses data for each **depth d** .

Axioms and Properties

- ① Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- ② This means four equal-optimal moves, all others lose instantly.

Axioms and Properties

- ① Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.

Axioms and Properties

- ① Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.
- ④ **Axiom:** Influence of *poor* moves tapers off:

$$\text{As } x_i \rightarrow 1.0, \quad \frac{\partial f}{\partial x_i} \rightarrow 0.$$

Axioms and Properties

- ① Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.
- ④ **Axiom:** Influence of *poor* moves tapers off:

$$\text{As } x_i \rightarrow 1.0, \quad \frac{\partial f}{\partial x_i} \rightarrow 0.$$

- ⑤ **Axiom:** Influence of *lower-ranked* moves becomes less:

$$\text{For } i < j, \quad \frac{\partial f}{\partial x_j} < \frac{\partial f}{\partial x_i}.$$

(Not quite what was meant...)

Axioms and Properties

- ① Suppose $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$.
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give $p_1 = p_2 = p_3 = p_4 = 0.25$, all other $p_i = 0$.
- ④ **Axiom:** Influence of *poor* moves tapers off:

$$\text{As } x_i \rightarrow 1.0, \quad \frac{\partial f}{\partial x_i} \rightarrow 0.$$

- ⑤ **Axiom:** Influence of *lower-ranked* moves becomes less:

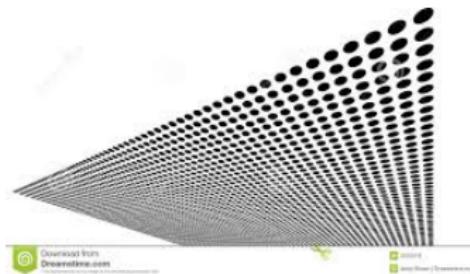
$$\text{For } i < j, \quad \frac{\partial f}{\partial x_j} < \frac{\partial f}{\partial x_i}.$$

(Not quite what was meant...)

- ⑥ “Universal Guess”: In the first Taylor term, use

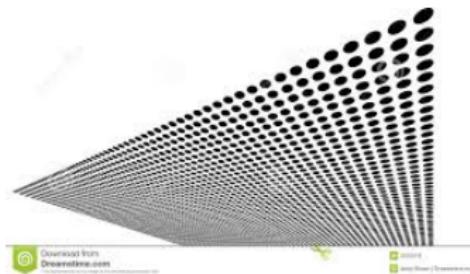
$$\frac{\partial f}{\partial x_i} \approx \frac{1}{i} a_i = \frac{1}{i} (1 - x_i).$$

The Tapered Grid



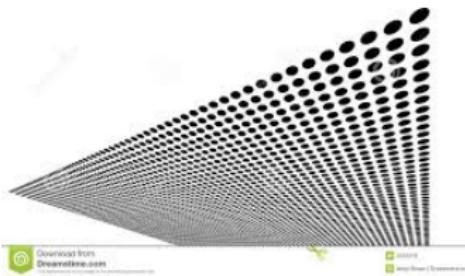
- ① Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

The Tapered Grid



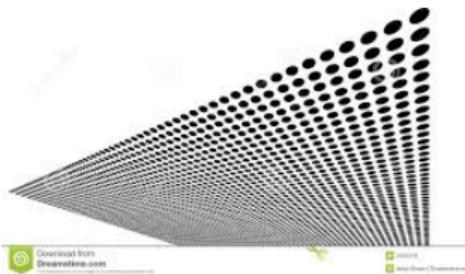
- ① Grid needs higher precision near 0.0 in any coordinate, less near 1.0 .
- ② Grid needs less precision also for higher coordinates i .

The Tapered Grid



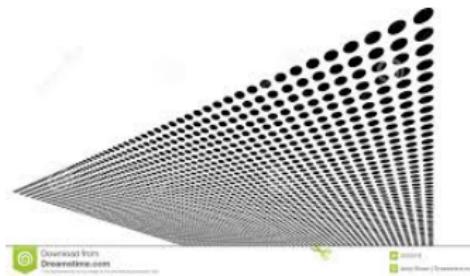
- ➊ Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
- ➋ Grid needs less precision also for higher coordinates i .
- ➌ Given $x = (x_1, \dots, x_N)$, how to define “nearest” gridpoint $u = (u_1, \dots, u_N)$?

The Tapered Grid



- ① Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
- ② Grid needs less precision also for higher coordinates i .
- ③ Given $x = (x_1, \dots, x_N)$, how to define “nearest” gridpoint $u = (u_1, \dots, u_N)$?
- ④ How to define a good bounding set u, v, \dots ?

The Tapered Grid



Download from
Dreamstime.com

Download
from Dreamstime.com

- ① Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
- ② Grid needs less precision also for higher coordinates i .
- ③ Given $x = (x_1, \dots, x_N)$, how to define “nearest” gridpoint $u = (u_1, \dots, u_N)$?
- ④ How to define a good bounding set u, v, \dots ?
- ⑤ How to make the computation of nearby gridpoints efficient?

Strategies

Given $x = (x_1, x_2, \dots, x_N)$,

- ① **Bounds** x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.

Strategies

Given $x = (x_1, x_2, \dots, x_N)$,

- ① **Bounds** x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.
- ② “**Nearest Neighbor**” is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.

Strategies

Given $x = (x_1, x_2, \dots, x_N)$,

- ➊ **Bounds** x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.
- ➋ “Nearest Neighbor” is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- ➌ Start with x^- , but “round up” when the rounding-down deficiency exceeds some weighted threshold.

Strategies

Given $x = (x_1, x_2, \dots, x_N)$,

- ➊ **Bounds** x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.
- ➋ “Nearest Neighbor” is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- ➌ Start with x^- , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ➍ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until x^- values come above it.

Strategies

Given $x = (x_1, x_2, \dots, x_N)$,

- ① **Bounds** x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.
- ② “**Nearest Neighbor**” is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- ③ Start with x^- , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ④ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until x^- values come above it.
- ⑤ Like a heuristic for solving Knapsack problems.

Strategies

Given $x = (x_1, x_2, \dots, x_N)$,

- ➊ **Bounds** x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.
- ➋ “Nearest Neighbor” is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- ➌ Start with x^- , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ➍ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until x^- values come above it.
- ➎ Like a heuristic for solving Knapsack problems.
- ➏ Refinements which we have not yet fully explored include working backward from $i = N$ (too).

Strategies

Given $x = (x_1, x_2, \dots, x_N)$,

- ① **Bounds** x^+ and x^- are well-defined by rounding each coordinate up/down to a gridpoint.
- ② “**Nearest Neighbor**” is defined by a *nondecreasing* sequence using only values from x^+ and x^- . Always $u_1 = 0.0 = x_1^+ = x_1^-$.
- ③ Start with x^- , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ④ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until x^- values come above it.
- ⑤ Like a heuristic for solving Knapsack problems.
- ⑥ Refinements which we have not yet fully explored include working backward from $i = N$ (too).
- ⑦ Combine with “universal gradient” idea, or even ignore said idea.

Results So Far...

- ① We ran experiments under a **randomized** distribution D_ϵ in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

Results So Far...

- ① We ran experiments under a **randomized** distribution D_ϵ in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose ϵ according to N , to make expectation $x_i \approx 1.0$ as i nears N .

Results So Far...

- ① We ran experiments under a **randomized** distribution D_ϵ in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose ϵ according to N , to make expectation $x_i \approx 1.0$ as i nears N .
- ③ Results under D_ϵ are **good**: 3-place precision on $\mu(\dots)$ given 2-place to 1-place precision on grid.

Results So Far...

- ① We ran experiments under a **randomized** distribution D_ϵ in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose ϵ according to N , to make expectation $x_i \approx 1.0$ as i nears N .
- ③ Results under D_ϵ are **good**: 3-place precision on $\mu(\dots)$ given 2-place to 1-place precision on grid.
- ④ Results on real chess data...

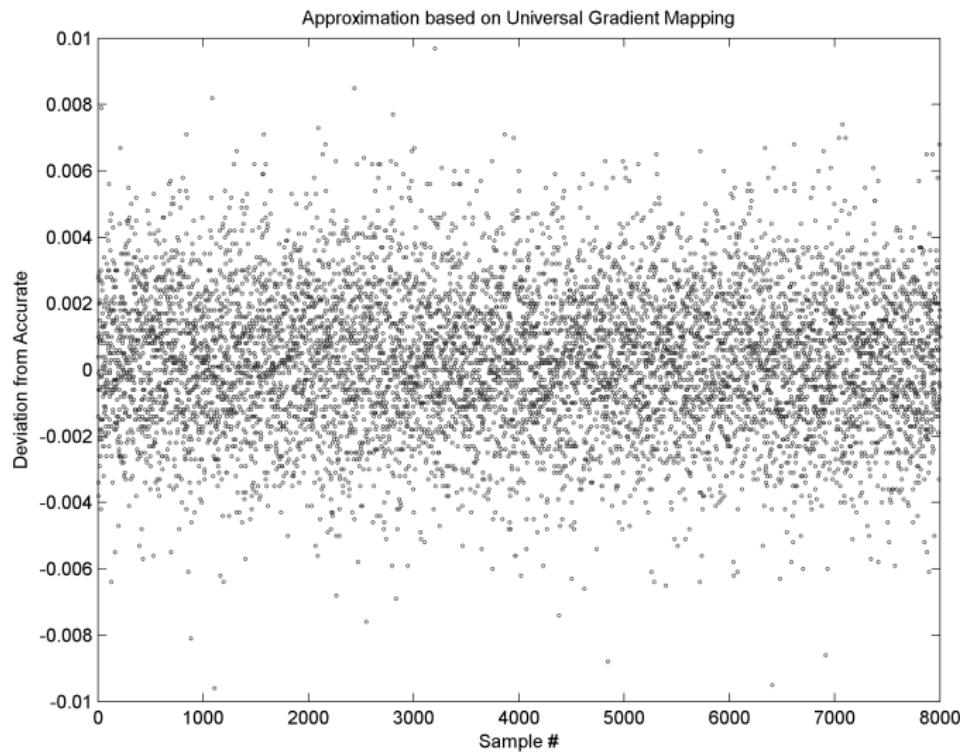
Results So Far...

- ① We ran experiments under a **randomized** distribution D_ϵ in which $r \in [x_{i-1}, 1]$ is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose ϵ according to N , to make expectation $x_i \approx 1.0$ as i nears N .
- ③ Results under D_ϵ are **good**: 3-place precision on $\mu(\dots)$ given 2-place to 1-place precision on grid.
- ④ Results on real chess data... still a work in progress.

Results for NN+UG



Results for Just NN

