

# Efficient Memoization for Approximate Function Evaluation over Sequence Arguments

AAIM 2014

Tamal Biswas and Kenneth W. Regan  
University at Buffalo (SUNY)

9 July 2014

# The Problem

- ① Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).

# The Problem

- ① Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).
- ② Need to evaluate  $y = f(x)$  for  $M = \text{millions of } x$ .

## The Problem

- ➊ Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).
- ➋ Need to evaluate  $y = f(x)$  for  $M = \text{millions}$  of  $x$ .
- ➌ Each eval of  $f$  is **expensive**. Many repetitive evals.

# The Problem

- ① Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).
- ② Need to evaluate  $y = f(x)$  for  $M = \text{millions}$  of  $x$ .
- ③ Each eval of  $f$  is **expensive**. Many repetitive evals.
- ④ However, the target function  $\mu(y_1, \dots, y_M)$  tolerates approximation:

# The Problem

- ➊ Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).
- ➋ Need to evaluate  $y = f(x)$  for  $M = \text{millions}$  of  $x$ .
- ➌ Each eval of  $f$  is **expensive**. Many repetitive evals.
- ➍ However, the target function  $\mu(y_1, \dots, y_M)$  tolerates approximation:
  - Could be linear:  $\mu = \sum_j a_j y_j$ . For mean or quantile statistics.

# The Problem

- ① Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).
- ② Need to evaluate  $y = f(x)$  for  $M = \text{millions}$  of  $x$ .
- ③ Each eval of  $f$  is **expensive**. Many repetitive evals.
- ④ However, the target function  $\mu(y_1, \dots, y_M)$  tolerates approximation:
  - Could be linear:  $\mu = \sum_j a_j y_j$ . For mean or quantile statistics.
  - Could be non-linear but well-behaved, e.g., logistic regression.

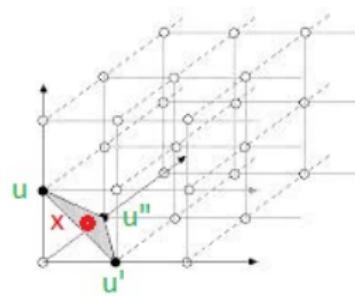
## The Problem

- ① Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).
- ② Need to evaluate  $y = f(x)$  for  $M = \text{millions}$  of  $x$ .
- ③ Each eval of  $f$  is **expensive**. Many repetitive evals.
- ④ However, the target function  $\mu(y_1, \dots, y_M)$  tolerates approximation:
  - Could be linear:  $\mu = \sum_j a_j y_j$ . For mean or quantile statistics.
  - Could be non-linear but well-behaved, e.g., logistic regression.
- ⑤ Two other helps:  $f$  is smooth and bounded.

## The Problem

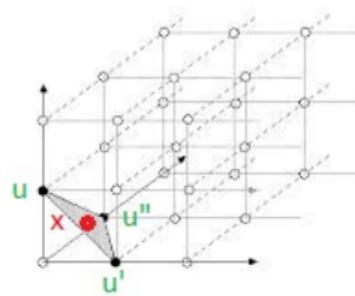
- ① Space of points  $x = (x_1, \dots, x_N)$ , where  $N$  is not small ( $N \approx 50$ ).
- ② Need to evaluate  $y = f(x)$  for  $M = \text{millions}$  of  $x$ .
- ③ Each eval of  $f$  is **expensive**. Many repetitive evals.
- ④ However, the target function  $\mu(y_1, \dots, y_M)$  tolerates approximation:
  - Could be linear:  $\mu = \sum_j a_j y_j$ . For mean or quantile statistics.
  - Could be non-linear but well-behaved, e.g., logistic regression.
- ⑤ Two other helps:  $f$  is smooth and bounded.
- ⑥ And we need good approximation to  $\mu(\dots)$  (only) under distributions  $D(x)$  controlled by a few model-specific parameters,

## The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$  for gridpoints  $u$ . Given  $x$  not in the grid, several ideas:

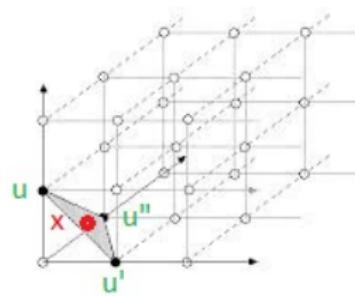
## The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$  for gridpoints  $u$ . Given  $x$  not in the grid, several ideas:

- ① Find nearest neighbor  $u$ , use  $f(u)$  as  $y$ . *Not good enough approximation.*

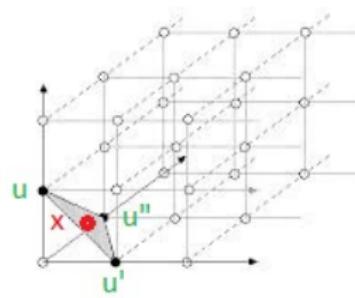
## The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$  for gridpoints  $u$ . Given  $x$  not in the grid, several ideas:

- ① Find nearest neighbor  $u$ , use  $f(u)$  as  $y$ . *Not good enough approximation.*
- ② Write  $x = \sum_k b_k u_k$ , use  $y = \sum_k b_k f(u_k)$ .

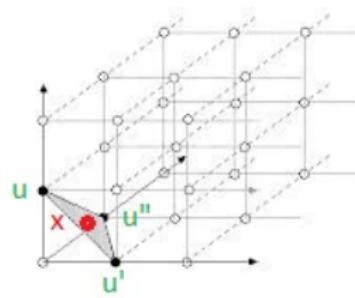
# The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$  for gridpoints  $u$ . Given  $x$  not in the grid, several ideas:

- ① Find nearest neighbor  $u$ , use  $f(u)$  as  $y$ . *Not good enough approximation.*
- ② Write  $x = \sum_k b_k u_k$ , use  $y = \sum_k b_k f(u_k)$ . *Seems better. But  $N$  is not small.*

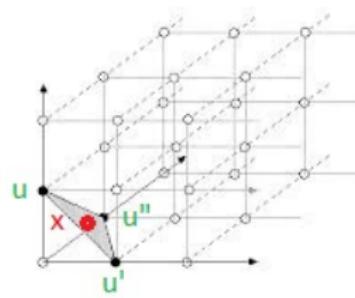
# The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$  for gridpoints  $u$ . Given  $x$  not in the grid, several ideas:

- ① Find nearest neighbor  $u$ , use  $f(u)$  as  $y$ . *Not good enough approximation.*
- ② Write  $x = \sum_k b_k u_k$ , use  $y = \sum_k b_k f(u_k)$ . *Seems better. But  $N$  is not small.*
- ③ Use any neighbor  $u$  and do Taylor expansion.

# The Euclidean Grid Case



Pre-compute—or memoize— $f(u)$  for gridpoints  $u$ . Given  $x$  not in the grid, several ideas:

- ① Find nearest neighbor  $u$ , use  $f(u)$  as  $y$ . *Not good enough approximation.*
- ② Write  $x = \sum_k b_k u_k$ , use  $y = \sum_k b_k f(u_k)$ . *Seems better. But  $N$  is not small.*
- ③ Use any neighbor  $u$  and do Taylor expansion.

# Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

# Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- Given that  $f$  is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.

# Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that  $f$  is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all  $f_i(u) = \frac{\partial f}{\partial x_i}(u)$ . **50x data!**

# Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that  $f$  is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all  $f_i(u) = \frac{\partial f}{\partial x_i}(u)$ . **50x data!**
- ③ **Main Question:** Can we “cheat” by shortcutting the partials?

# Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that  $f$  is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all  $f_i(u) = \frac{\partial f}{\partial x_i}(u)$ . **50x data!**
- ③ **Main Question:** Can we “cheat” by shortcircuiting the partials?
- ④ If  $f$  were linear, obviously  $\frac{\partial f}{\partial x_i} = \text{constant}$ .

# Taylor Expansion

$$f(x) = f(u) + \sum_{i=1}^{\ell} (x_i - u_i) \frac{\partial f}{\partial x_i}(u) + \frac{1}{2} \sum_{i,j} (x_i - u_i)(x_j - u_j) \frac{\partial^2 f}{\partial u_i \partial u_j} + \dots$$

- ① Given that  $f$  is fairly smooth as well as bounded, and the grid is fine enough, we can ignore quadratic and higher terms.
- ② *Problem* is that now we need to memoize all  $f_i(u) = \frac{\partial f}{\partial x_i}(u)$ . **50x data!**
- ③ **Main Question:** Can we “cheat” by shortcutting the partials?
- ④ If  $f$  were linear, obviously  $\frac{\partial f}{\partial x_i} = \text{constant}$ .
- ⑤ What if the grid is warped “similarly” to  $f$ ?

## Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations  $t$ .  
Chess game turns

## Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations  $t$ .  
Chess game turns
- ② Inputs: Values  $v_i$  for every option at turn  $t$ .  
Computer values of moves  $m_i$

## Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations  $t$ .  
Chess game turns
- ② Inputs: Values  $v_i$  for every option at turn  $t$ .  
Computer values of moves  $m_i$
- ③ Parameters:  $s, c, \dots$  denoting skills and levels.  
Trained correspondence to chess Elo rating  $E$

## Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations  $t$ .  
Chess game turns
- ② Inputs: Values  $v_i$  for every option at turn  $t$ .  
Computer values of moves  $m_i$
- ③ Parameters:  $s, c, \dots$  denoting skills and levels.  
Trained correspondence to chess Elo rating  $E$
- ④ Defines *fallible agent*  $P(s, c, \dots)$ .

## Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations  $t$ .  
Chess game turns
- ② Inputs: Values  $v_i$  for every option at turn  $t$ .  
Computer values of moves  $m_i$
- ③ Parameters:  $s, c, \dots$  denoting skills and levels.  
Trained correspondence to chess Elo rating  $E$
- ④ Defines *fallible agent*  $P(s, c, \dots)$ .
- ⑤ Main Output: Probabilities  $p_{t,i}$  for  $P(s, c, \dots)$  to select option  $i$  at time  $t$ .

## Context: Decision-Making Model at Chess

- ① Domain: A set of decision-making situations  $t$ .  
Chess game turns
- ② Inputs: Values  $v_i$  for every option at turn  $t$ .  
Computer values of moves  $m_i$
- ③ Parameters:  $s, c, \dots$  denoting skills and levels.  
Trained correspondence to chess Elo rating  $E$
- ④ Defines *fallible agent*  $P(s, c, \dots)$ .
- ⑤ Main Output: Probabilities  $p_{t,i}$  for  $P(s, c, \dots)$  to select option  $i$  at time  $t$ .
- ⑥ Derived Outputs:
  - Aggregate statistics: *move-match* MM, *average error* AE, ...
  - Projected confidence intervals for those statistics.
  - “Intrinsic Performance Ratings” (IPR’s).

## How the Model Operates

- ① Use analysis data and parameters  $s, c, \dots$  to compute “perceived inferiorities”  $x_i \in [0.0, 1.0]$  of each of  $N$  possible moves. Let  $a_i = 1 - x_i$ .

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

## How the Model Operates

- ① Use analysis data and parameters  $s, c, \dots$  to compute “perceived inferiorities”  $x_i \in [0.0, 1.0]$  of each of  $N$  possible moves. Let  $a_i = 1 - x_i$ .

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function  $h$ , solve  $\frac{h(p_i)}{h(p_1)} = a_i$  subject to  $\sum_{i=1}^N p_i = 1$ .

## How the Model Operates

- ① Use analysis data and parameters  $s, c, \dots$  to compute “perceived inferiorities”  $x_i \in [0.0, 1.0]$  of each of  $N$  possible moves. Let  $a_i = 1 - x_i$ .

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function  $h$ , solve  $\frac{h(p_i)}{h(p_1)} = a_i$  subject to  $\sum_{i=1}^N p_i = 1$ .
- ③ It suffices to compute  $p_1$ ; then  $p_i = h^{-1}(a_i h(p_1))$  is relatively easy.

# How the Model Operates

- ① Use analysis data and parameters  $s, c, \dots$  to compute “perceived inferiorities”  $x_i \in [0.0, 1.0]$  of each of  $N$  possible moves. Let  $a_i = 1 - x_i$ .

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function  $h$ , solve  $\frac{h(p_i)}{h(p_1)} = a_i$  subject to  $\sum_{i=1}^N p_i = 1$ .
- ③ It suffices to compute  $p_1$ ; then  $p_i = h^{-1}(a_i h(p_1))$  is relatively easy.
- ④ Model uses  $a_i = e^{-(\frac{\delta_i}{s})^c}$ , where  $\delta_i$  is the scaled difference in value between the best move and the  $i$ -th best move. Also fairly cheap.

# How the Model Operates

- ① Use analysis data and parameters  $s, c, \dots$  to compute “perceived inferiorities”  $x_i \in [0.0, 1.0]$  of each of  $N$  possible moves. Let  $a_i = 1 - x_i$ .

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function  $h$ , solve  $\frac{h(p_i)}{h(p_1)} = a_i$  subject to  $\sum_{i=1}^N p_i = 1$ .
- ③ It suffices to compute  $p_1$ ; then  $p_i = h^{-1}(a_i h(p_1))$  is relatively easy.
- ④ Model uses  $a_i = e^{-(\frac{\delta_i}{s})^c}$ , where  $\delta_i$  is the scaled difference in value between the best move and the  $i$ -th best move. Also fairly cheap.
- ⑤ But  $y = p_1 = f(x)$  may require expensive iterative approximation.

# How the Model Operates

- ① Use analysis data and parameters  $s, c, \dots$  to compute “perceived inferiorities”  $x_i \in [0.0, 1.0]$  of each of  $N$  possible moves. Let  $a_i = 1 - x_i$ .

$$(x_1 = 0.0 \leq x_2 \leq x_3 \leq \dots \leq x_N) \equiv (a_1 = 1.0 \geq a_2 \geq \dots \geq a_N \approx 0)$$

- ② For a fixed function  $h$ , solve  $\frac{h(p_i)}{h(p_1)} = a_i$  subject to  $\sum_{i=1}^N p_i = 1$ .
- ③ It suffices to compute  $p_1$ ; then  $p_i = h^{-1}(a_i h(p_1))$  is **relatively easy**.
- ④ Model uses  $a_i = e^{-(\frac{\delta_i}{s})^c}$ , where  $\delta_i$  is the *scaled* difference in value between the best move and the  $i$ -th best move. **Also fairly cheap**.
- ⑤ But  $y = p_1 = f(x)$  may require expensive iterative approximation.
- ⑥ Note  $f$  is *symmetric*, so  $x$  can be an ordered sequence.

## Side Note and Pure-Math Problem

- ① The simple function  $h(p) = p$ , so  $p_i = \frac{a_i}{\sum_i a_i}$ , **works poorly**.

## Side Note and Pure-Math Problem

- ➊ The simple function  $h(p) = p$ , so  $p_i = \frac{a_i}{\sum_i a_i}$ , **works poorly**.
- ➋ Much better is  $h(p) = \frac{1}{\log(1/p)}$ .

## Side Note and Pure-Math Problem

- ➊ The simple function  $h(p) = p$ , so  $p_i = \frac{a_i}{\sum_i a_i}$ , **works poorly**.
- ➋ Much better is  $h(p) = \frac{1}{\log(1/p)}$ .
- ➌ Gives  $p_i = p_1^{b_i}$ , where  $b_i = 1/a_i = \frac{1}{1-x_i}$ .

## Side Note and Pure-Math Problem

- ① The simple function  $h(p) = p$ , so  $p_i = \frac{a_i}{\sum_i a_i}$ , **works poorly**.
- ② Much better is  $h(p) = \frac{1}{\log(1/p)}$ .
- ③ Gives  $p_i = p_1^{b_i}$ , where  $b_i = 1/a_i = \frac{1}{1-x_i}$ .
- ④ **Problem:** Given  $y$  and  $b_1, \dots, b_N$ , find  $p$  such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

## Side Note and Pure-Math Problem

- ① The simple function  $h(p) = p$ , so  $p_i = \frac{a_i}{\sum_i a_i}$ , **works poorly**.
- ② Much better is  $h(p) = \frac{1}{\log(1/p)}$ .
- ③ Gives  $p_i = p_1^{b_i}$ , where  $b_i = 1/a_i = \frac{1}{1-x_i}$ .
- ④ **Problem:** Given  $y$  and  $b_1, \dots, b_N$ , find  $p$  such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

- ⑤ For  $N = 1$ , simply  $p = \sqrt[b]{y}$ . So this generalizes taking roots.

## Side Note and Pure-Math Problem

① The simple function  $h(p) = p$ , so  $p_i = \frac{a_i}{\sum_i a_i}$ , **works poorly**.

② Much better is  $h(p) = \frac{1}{\log(1/p)}$ .

③ Gives  $p_i = p_1^{b_i}$ , where  $b_i = 1/a_i = \frac{1}{1-x_i}$ .

④ **Problem:** Given  $y$  and  $b_1, \dots, b_N$ , find  $p$  such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

⑤ For  $N = 1$ , simply  $p = \sqrt[b]{y}$ . So this generalizes taking roots.

⑥ We have  $y = 1$  and  $b_1 = 1$ . Can this be solved **without iteration**?

## Side Note and Pure-Math Problem

- ① The simple function  $h(p) = p$ , so  $p_i = \frac{a_i}{\sum_i a_i}$ , **works poorly**.
- ② Much better is  $h(p) = \frac{1}{\log(1/p)}$ .
- ③ Gives  $p_i = p_1^{b_i}$ , where  $b_i = 1/a_i = \frac{1}{1-x_i}$ .
- ④ **Problem:** Given  $y$  and  $b_1, \dots, b_N$ , find  $p$  such that

$$p^{b_1} + p^{b_2} + \dots + p^{b_N} = y.$$

- ⑤ For  $N = 1$ , simply  $p = \sqrt[b]{y}$ . So this generalizes taking roots.
- ⑥ We have  $y = 1$  and  $b_1 = 1$ . Can this be solved **without iteration**?
- ⑦ Also: Current Expansion uses data for each **depth  $d$** .

## Axioms and Properties

- ① Suppose  $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$ .
- ② This means four equal-optimal moves, all others lose instantly.

## Axioms and Properties

- ① Suppose  $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$ .
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give  $p_1 = p_2 = p_3 = p_4 = 0.25$ , all other  $p_i = 0$ .

## Axioms and Properties

- ① Suppose  $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$ .
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give  $p_1 = p_2 = p_3 = p_4 = 0.25$ , all other  $p_i = 0$ .
- ④ **Axiom:** Influence of *poor* moves tapers off:

$$\text{As } x_i \rightarrow 1.0, \quad \frac{\partial f}{\partial x_i} \rightarrow 0.$$

## Axioms and Properties

- ① Suppose  $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$ .
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give  $p_1 = p_2 = p_3 = p_4 = 0.25$ , all other  $p_i = 0$ .
- ④ **Axiom:** Influence of *poor* moves tapers off:

$$\text{As } x_i \rightarrow 1.0, \quad \frac{\partial f}{\partial x_i} \rightarrow 0.$$

- ⑤ **Axiom:** Influence of *lower-ranked* moves becomes less:

$$\text{For } i < j, \quad \frac{\partial f}{\partial x_j} < \frac{\partial f}{\partial x_i}.$$

(Not quite what was meant...)

# Axioms and Properties

- ① Suppose  $x = (0.0, 0.0, 0.0, 0.0, 1.0, 1.0, \dots, 1.0)$ .
- ② This means four equal-optimal moves, all others lose instantly.
- ③ The model will give  $p_1 = p_2 = p_3 = p_4 = 0.25$ , all other  $p_i = 0$ .
- ④ **Axiom:** Influence of *poor* moves tapers off:

$$\text{As } x_i \rightarrow 1.0, \quad \frac{\partial f}{\partial x_i} \rightarrow 0.$$

- ⑤ **Axiom:** Influence of *lower-ranked* moves becomes less:

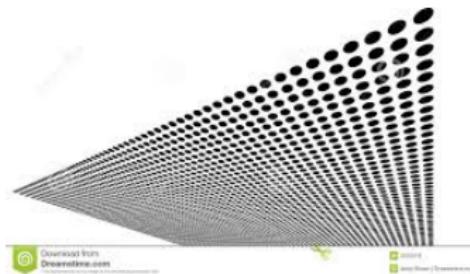
$$\text{For } i < j, \quad \frac{\partial f}{\partial x_j} < \frac{\partial f}{\partial x_i}.$$

(Not quite what was meant...)

- ⑥ “Universal Guess”: In the first Taylor term, use

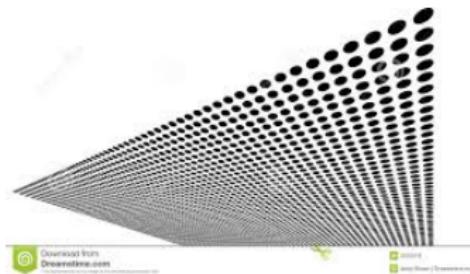
$$\frac{\partial f}{\partial x_i} \approx \frac{1}{i} a_i = \frac{1}{i} (1 - x_i).$$

# The Tapered Grid



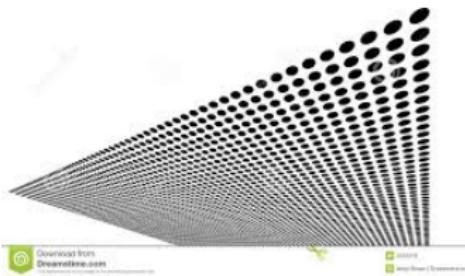
- ① Grid needs higher precision near 0.0 in any coordinate, less near 1.0.

# The Tapered Grid



- ① Grid needs higher precision near  $0.0$  in any coordinate, less near  $1.0$ .
- ② Grid needs less precision also for higher coordinates  $i$ .

# The Tapered Grid



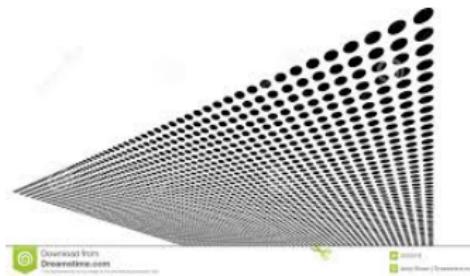
- ➊ Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
- ➋ Grid needs less precision also for higher coordinates  $i$ .
- ➌ Given  $x = (x_1, \dots, x_N)$ , how to define “nearest” gridpoint  $u = (u_1, \dots, u_N)$ ?

# The Tapered Grid



- ① Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
- ② Grid needs less precision also for higher coordinates  $i$ .
- ③ Given  $x = (x_1, \dots, x_N)$ , how to define “nearest” gridpoint  $u = (u_1, \dots, u_N)$ ?
- ④ How to define a good bounding set  $u, v, \dots$ ?

# The Tapered Grid



Download from  
Dreamstime.com

Download  
from Dreamstime.com

- ① Grid needs higher precision near 0.0 in any coordinate, less near 1.0.
- ② Grid needs less precision also for higher coordinates  $i$ .
- ③ Given  $x = (x_1, \dots, x_N)$ , how to define “nearest” gridpoint  $u = (u_1, \dots, u_N)$ ?
- ④ How to define a good bounding set  $u, v, \dots$ ?
- ⑤ How to make the computation of nearby gridpoints efficient?

# Strategies

Given  $x = (x_1, x_2, \dots, x_N)$ ,

- ① **Bounds**  $x^+$  and  $x^-$  are well-defined by rounding each coordinate up/down to a gridpoint.

# Strategies

Given  $x = (x_1, x_2, \dots, x_N)$ ,

- ① **Bounds**  $x^+$  and  $x^-$  are well-defined by rounding each coordinate up/down to a gridpoint.
- ② “**Nearest Neighbor**” is defined by a *nondecreasing* sequence using only values from  $x^+$  and  $x^-$ . Always  $u_1 = 0.0 = x_1^+ = x_1^-$ .

# Strategies

Given  $x = (x_1, x_2, \dots, x_N)$ ,

- ➊ **Bounds**  $x^+$  and  $x^-$  are well-defined by rounding each coordinate up/down to a gridpoint.
- ➋ “Nearest Neighbor” is defined by a *nondecreasing* sequence using only values from  $x^+$  and  $x^-$ . Always  $u_1 = 0.0 = x_1^+ = x_1^-$ .
- ➌ Start with  $x^-$ , but “round up” when the rounding-down deficiency exceeds some weighted threshold.

# Strategies

Given  $x = (x_1, x_2, \dots, x_N)$ ,

- ➊ **Bounds**  $x^+$  and  $x^-$  are well-defined by rounding each coordinate up/down to a gridpoint.
- ➋ “Nearest Neighbor” is defined by a *nondecreasing* sequence using only values from  $x^+$  and  $x^-$ . Always  $u_1 = 0.0 = x_1^+ = x_1^-$ .
- ➌ Start with  $x^-$ , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ➍ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until  $x^-$  values come above it.

# Strategies

Given  $x = (x_1, x_2, \dots, x_N)$ ,

- ① **Bounds**  $x^+$  and  $x^-$  are well-defined by rounding each coordinate up/down to a gridpoint.
- ② “**Nearest Neighbor**” is defined by a *nondecreasing* sequence using only values from  $x^+$  and  $x^-$ . Always  $u_1 = 0.0 = x_1^+ = x_1^-$ .
- ③ Start with  $x^-$ , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ④ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until  $x^-$  values come above it.
- ⑤ Like a heuristic for solving Knapsack problems.

# Strategies

Given  $x = (x_1, x_2, \dots, x_N)$ ,

- ➊ **Bounds**  $x^+$  and  $x^-$  are well-defined by rounding each coordinate up/down to a gridpoint.
- ➋ “Nearest Neighbor” is defined by a *nondecreasing* sequence using only values from  $x^+$  and  $x^-$ . Always  $u_1 = 0.0 = x_1^+ = x_1^-$ .
- ➌ Start with  $x^-$ , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ➍ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until  $x^-$  values come above it.
- ➎ Like a heuristic for solving Knapsack problems.
- ➏ Refinements which we have not yet fully explored include working backward from  $i = N$  (too).

# Strategies

Given  $x = (x_1, x_2, \dots, x_N)$ ,

- ① **Bounds**  $x^+$  and  $x^-$  are well-defined by rounding each coordinate up/down to a gridpoint.
- ② “**Nearest Neighbor**” is defined by a *nondecreasing* sequence using only values from  $x^+$  and  $x^-$ . Always  $u_1 = 0.0 = x_1^+ = x_1^-$ .
- ③ Start with  $x^-$ , but “round up” when the rounding-down deficiency exceeds some weighted threshold.
- ④ Once you have “rounded up,” you can use same gridpoint value, but cannot “round down” again until  $x^-$  values come above it.
- ⑤ Like a heuristic for solving Knapsack problems.
- ⑥ Refinements which we have not yet fully explored include working backward from  $i = N$  (too).
- ⑦ Combine with “universal gradient” idea, or even ignore said idea.

## Results So Far...

- ① We ran experiments under a **randomized** distribution  $D_\epsilon$  in which  $r \in [x_{i-1}, 1]$  is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

## Results So Far...

- ① We ran experiments under a **randomized** distribution  $D_\epsilon$  in which  $r \in [x_{i-1}, 1]$  is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose  $\epsilon$  according to  $N$ , to make expectation  $x_i \approx 1.0$  as  $i$  nears  $N$ .

## Results So Far...

- ① We ran experiments under a **randomized** distribution  $D_\epsilon$  in which  $r \in [x_{i-1}, 1]$  is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose  $\epsilon$  according to  $N$ , to make expectation  $x_i \approx 1.0$  as  $i$  nears  $N$ .
- ③ Results under  $D_\epsilon$  are **good**: 3-place precision on  $\mu(\dots)$  given 2-place to 1-place precision on grid.

## Results So Far...

- ① We ran experiments under a **randomized** distribution  $D_\epsilon$  in which  $r \in [x_{i-1}, 1]$  is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose  $\epsilon$  according to  $N$ , to make expectation  $x_i \approx 1.0$  as  $i$  nears  $N$ .
- ③ Results under  $D_\epsilon$  are **good**: 3-place precision on  $\mu(\dots)$  given 2-place to 1-place precision on grid.
- ④ Results on real chess data...

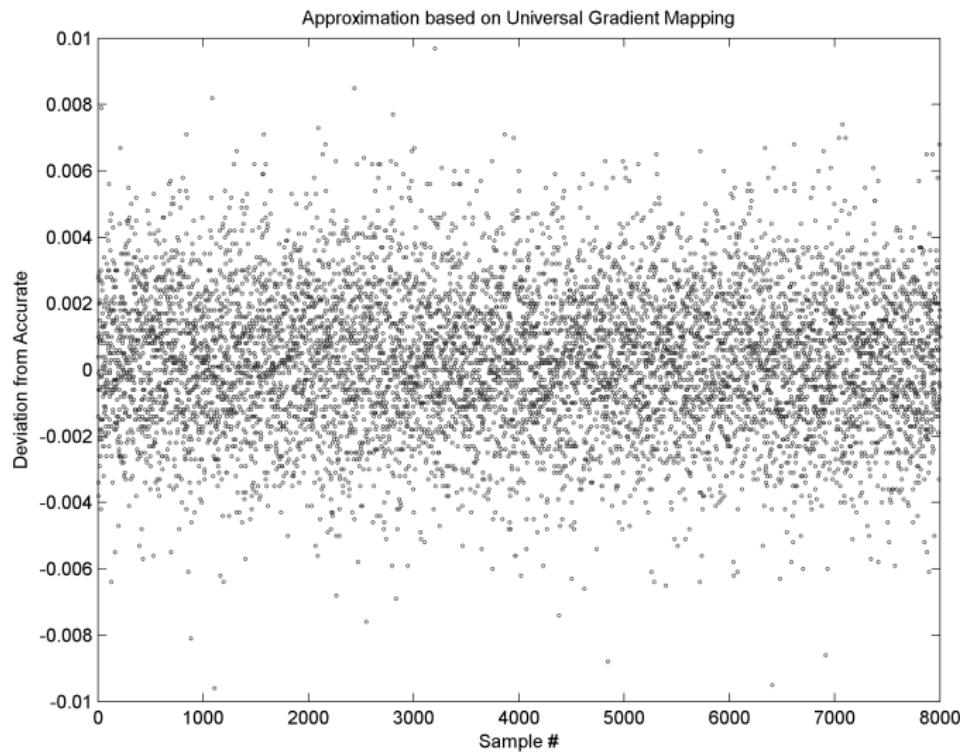
## Results So Far...

- ① We ran experiments under a **randomized** distribution  $D_\epsilon$  in which  $r \in [x_{i-1}, 1]$  is sampled uniformly and

$$x_i = x_{i-1} + \epsilon(r - x_{i-1}) \quad (\text{capped at } x_i = 1.0).$$

- ② That is, we make each move randomly slightly inferior to the previous one. We choose  $\epsilon$  according to  $N$ , to make expectation  $x_i \approx 1.0$  as  $i$  nears  $N$ .
- ③ Results under  $D_\epsilon$  are **good**: 3-place precision on  $\mu(\dots)$  given 2-place to 1-place precision on grid.
- ④ Results on real chess data... still a work in progress.

# Results for NN+UG



# Results for Just NN

